224 Homogeneous Difference Schemes
problems, whose ingredients have no fixed sign and turn out to be non-self-
adjoint. In this case the coefficients Yi of the approximate solution (20) are
to be determined from the orthogonality conditions for the residual Aun - f
with respect to all of the basis functions 7Ji(x):
(33) (Aun-f,7];)=0, i=l,2, ... ,n.
A non-self-adjoint boundary-value problem acquires the form:
(ku')' + r(x) u' - q(x) u = -f(x),
(34) 0 < x < 1, u(O) = u(l) = 0,
k(x) > 0, q(x) > 0.
We introduce the grid wh ={xi= ih, i = 0, 1, ... , N, hN = l}. Then the
dirnension n of the space Vn equals N - 1. The functions
7J;(x)=17(x~xi), i=l,2, ... ,N-1,
where the function 77( s) was specified by (25), provide the background for
subsequent constructions.
(35)
In this context, condition (33) becomes
N-l
L IY;j Yj - f3; = 0 , i = 1, 2, ... , N - 1 ,
j=l
where
1
J
(
di7; di7j
cxij = k(x) dx dx - r(x) -' d77· dx 7lj(x) + q(x) 7J;(x) 7lj(x) ) dx,
0
(36)
1
f3;= jf(x)17;(x)dx, i,J=l,2, ... ,N-1.
0
By definitions (25), (25') of the function 17i(x), the coefficients <-'<;,j are
nonzero only for J = i - 1, i, i + 1. Retaining notations (30) for ai and cl;
and (32) for tpi and accepting
x; u
b-:- = J:_ J r(x) (x - X;_ 1 ) dx = J r(xi +sh) (1 + s) ds,
' h2
Xi-I - l
(37)
"i+1 l
bi = : 2 J r(x) (xi+i - x) dx = ;· r(x; +sh) (l - s) ds,
Xi 0