282 Difference Schernes for Elliptic Equations
is valid with
12
M - o
o-2 lfT'
V 'I '2
Proof Suppose that vk, k 2 ( x) and Ak, k) x) are the eigenfunctions and eigen-
values of the operator A that we have determined in Section 1 for ko: =
1, 2, ... , No: - 1 and CY = 1, 2. The expansion of the function y( x) with
respect to the orthonormal functions { vk, k 2 ( x)}
yields
y(x) = L ck,k2 vk,k2(x)
kl I k2
Ay = L ck,k2 Ak1A'2 vA>1h ,
7.:1) k'J
llYll2= L ci 1 k 2 '
k 1, k2
II Ay 11
2
= L ci,k2 >-Lk2 ·
k1 I k2
The function y( x) satisfies the inequality
I y(x) I< ( L I ck 1 k 2 I) max I vk,k 2 (x) I·
k k 1, 2 ki,k2
From formula (5) we get I vk,k 2 (x) I < 2/ .jl;r;. Applying the Cauchy-
Bunyakovski1 inequality we establish the chain of the relations
(21)
4
11 12 ( L I ck,l.:2 I Ak,k2 A,'.J'
ki J k2
4
2=
;,2 c2
2=
1
<-
(^11 12) ki J k2 k1k2 kik2 k 1 J k3 >,2 kik2
4
II Ay (^112) 2= ;,-2
II (^12) k,' k2 k, k2.