1549301742-The_Theory_of_Difference_Schemes__Samarskii

(jair2018) #1
Classes of stable three-layer schemes 439

We modify the expression in the brackets on the right-hand side of
identity (18) by a simple observation that

(A(y + y), y + :iJ) = (A(y + :iJ), y + :iJ) + r (Ar(y + :iJ), y + :iJ) ,


( ( R - i A) Yf, Yr) = ( ( R - i A) Yr, Yt) + r ( (R - t A) f Yr, Yr)


A=A(t-r), Ar = (A - A)/ r.


Also, it will be convenient to introduce more compact notations

(52) J = J(t + r) + llY(t + r)ll~t), J = J(t) = llY(t)ll~t-r) ·


With these, identity ( 18) is recast as

(53) 2r (Byo, t yo)+ t J = J + 2r (<tJ, yo)+ t T F,


(54)

showing the new members to be sensible ones. If the operators R - A/4
and A satisfy condition ( 49), then

llFll<4 C3 ( A(y+:iJ),y+:iJ - ) +r^2 c 3 ( ( R.-4Afyf,Yf -^1 -) ) =c 31


and from identity (53) for R. > A/4 it follows that


(55)

In the general case when each of the operators R.(t) and A(t) satisfies
condition ( 49), we obtain

under the constraint R. >^1 !' A, where E = const > 0 is independent of h
and r, since


for R. >^1 + 4 E A.

Free download pdf