1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
3.3 • HARMONIC FUNCTIONS 119

I I
I
Bquiporential

,. I
I

Streamline
,
,
,
,

Figure 3.5 The families of orthogonal curves {(x,y): <f>(x,y) =constant} and
{(x, y) : ..P (x, y) = constant} for the function F (z) = 4> (x, y) + i,P (x, y).

y
The fluid flow V(x,y) = 2x -i 2y

7


6


5

4


3
/' S!rea.mline

2


2 3 4 5 6 7

Figure 3.6 T he equipotential cu.rves x^2 - y^2 = C and streamline curves 2xy = C for
the function F (z) = z^2 •

-------.. EXERCISES FOR SECTION 3.3



  1. Determine where the foUowing functions are harmonic.


(a) u (x, y) = e% cosy and t1 (x , y) = e% sin y.

(b) u(x,y) = ln(x^2 +y^2 ) for (x,y) # (0,0).
Free download pdf