5.4 • TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 179
where coshy = e• + 2 • - • and sinhy = ••7-•, respectively, are the hyperbolic
cosine and hyperbolic sine functions that you studied in calculus.
Similarly,
cosz=^1.. )
2
(e"+e- u
= ~ ( ei(x+iy) + e -i(x+iy))
=^1 2 (e- Y +· t:Z: + eY-•X. )
= ~ (e-Y (cosx + isinx) +ell (cosx - isinx)]
= cos x (ell~ e-Y) -i sin x ( eY -2 e-Y)
= cos x cosh y - isin x sinh y.
(5- 34 )
(5-35)
Equipped with Identities (5-32)-(5-35), we can now establish many other
properties of the trigonometric functions. We begjn with some periodic results.
- For all complex numbers z = x + i y ,
sin (z + 2tr) = sinz,
cos (z + 2tr) = cosz,
sin (z +tr)= -sinz,
cos(z+ tr) = - cosz,
tan(z+ tr) = tanz, and
cot ( z + 7r) = cot z.
Clearly, sin (z + 2tr) = sin !(x + 2tr) + iy]. By Identity (5-33) this expression
is sin (x + 2tr) cosh y + icos (x + 2tr) sinh y = sinx cosh y + i cosx sinh y =
sin z. Again, the proofs for the other periodic results are left as exercises.
- If z1 and z 2 are any complex numbers, then
sin (z1 + zi) = sin z1 cos z2 + cos z1 sin z2 and
cos~+Zz)=cosz1coszi-~~~Zz. w
sin2z = 2sinzcosz,
cos 2z = cos^2 z -sin^2 z , and
sin (i +z) =sin(~ -z) = cosz.