1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1

240 CHAPTER 6 • COMPLEX INTEGRATION


7. Find fct(o) z -^3 sinh (z^2 ) dz.


  1. Find fcz-^2 sinz dz along the following contours:


(a) The circle C{ ( ~).
(b) The circle Ct ( 7).


  1. Find fct(O) z-" exp z dz, where n is a positive integer.

  2. Find fc z-^2 (z^2 - 16)-^1 expz dz along the following contours:


(a} The circle Ct (0).
(b} The circle Ct (4).

11. Find fct(i+i) (z^4 + 4r
1
dz.


  1. Find fc z -^1 (z -1)-^1 expz dz along the following contours:


(a} The circle ct (0).


(b) The circle Ci (0).



  1. Find fc (z^2 + lr^1 sinz dz along the following contours:


(a) The circle Ct (i).
(b} The circle ct ( -i).


  1. Find fct<•l (z^2 + 1)-
    2
    dz.

  2. Find fc (z^2 + 1)-
    1
    dz along the following contours:


(a.) The circle C{ (i).
(b} The circle Ct (-i).


  1. Let P (z) = ao +a1z+<hz^2 +asz^3. Find fct(o) P (z)z-n d.z, where n is a positive
    integer.

  2. Let z1 and z2 be two complex numbers that lie interior to the simple closed contour
    C with positive orientation. Evaluate fc (z -z 1 ) -^1 (z - z2)-^1 dz.

  3. Let f be analytic in the simply connected domain D and let z 1 and Z2 be two
    complex numbers that lie interior to the simple closed contour C having positive
    orientation that lies in D. Show that


State what happens when z2 - z 1.


  1. The Legendre polynomial Pn (z) is defined by


Pn (z} = 2 !n!:; [ (z^2 - l)"].

Free download pdf