1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1

298 CHAPTER 8 • RESIDUE THEORY


which is valid for lz - al < le - al. Thus, the Laurent series off about the point
a is


A

00
[ B C ] n

f (z) = z - a -~ (b -a)"+^1 + (c - a)"+l (z -a) '

which is valid for lz - al < R, where R = min {lb-al, le -al}. Therefore, A =

Res[!, a}, and calculation reveals that

Res[Ja]=A=lim P(z) = P(a).
' z-a (z - b)(z - c) (a -b)(a - c)

•EXAMPLE 8.8 Express/ (z) = z(z~f~;_ 2 > in partial fractions.

Solution Computing t he residues, we obtain


Res [j, OJ = 1, Res[!, 1 J = - 5, and Res [f , 2) = 4.

Example 8. 7 gives us

3z + 2 1 5 4
-----= - ---+ --.
z(z-l)(z-2) z z-1 z-2

Remark 8. 1 If a repeated root occurs, then the process is similar, and we can
easily show that if P (z) has degree of at most 2, then


f ( )


_ P (z) _ A B C
z - 2 - 2 + --+ --,
(z -a) (z - b) (z -a) z - a z - b

whe re A= Res[(z - a) f (z), a}, B =Res[/, a], and C = Res[f,b).



  • EXAMPLE 8.9 Express f (z) = ~»t;.:t{ in partial fractions.


Solution Using the previous remark, we have

A B C
f(z)= 2 +--+-,
(z -a) z -a z - b




Free download pdf