300 CHAPTER 8 • RESIDUE THEORY
- Let f and g have an isolated singularity at z 0. Show that Res[/+ g, zo) =
Res[f , z o] + Res(g, zo]. - Evaluate
dz
(a) J - 4- ·
Cj*"(-l+i) z + 4
(b) I 2 dz.
C i°(i) z(z - 2z+2)
(c) f e;z dz.
ct(o) z +z
(d) J si~z dz
2
_
ct(o) 4z - 7r
(e) J si~z dz.
Ci(O) z + 1
(f) I --/=--.
C {(O) z sm z
d z
(g) I -. 2 -·
C{ (O) Z Sm z
- Let f and g be analytic at zo. If f (zo) ::J 0 and g has a simple zero at z 0 ,
then show that Res[~, zo) =: ~::~.
5. Find J (z - 1)-^2 {z^2 + 4) -
1
dz when
c
(a) c = ct (1).
(b) C =Ct (O).
- Find J (z^6 +1) -
1
dz when
c
(a) c =er (i).
(b) C =Ct (1; i). Hint: If zo is a singularity of f (z) = z 6 ~
1
, show
that Resjf,zo) = -~zo.