8.4 • IMPROPER INTEGRALS INVOLVING TRIGONOMETR.!C FUNCTIONS 313
the residues with the aid of L'Hopital's rule:
R 1 / 1
.
1 1
. (z-1-i)exp(iz)
es , + i = 1m
- I+! z^4 + 4
Similarly,
= lim [l +i(z- 1 -i)]exp(iz)
Z-"J+i 4z3
exp(-l+i)
= 4(1+i)^3
sin 1 -cos 1 - i (cos 1 +sin1)
16e
R If
_
1
.
1
= cos 1 - sin 1 - i (cos 1+sin1)
es , +i
6
.
1 e
Using Equation (8-13), we get
1
00
co:x ~x = -27T [Im (Res[/, 1 + i]) +Im (Res[/ , - 1 +ii)]
- oo x +
_ 7r(cosl +sinl)- 4e
We are almost ready to give the proof of Theorem 8.4, but first we need one
preliminary result.
t Lemma 8.1 (Jordan's lemma) Suppose that P and Qare polynomials of de-
gree m and n, respectively, where n ~ m + 1. If Cn is the upper semicircle
z = Rei^8 , for 0 ~ 8 ~ 1T, then
lim 1 exp (iz) p (z) dz= O.
R -oo CR Q(z)
P r oof: From n :'.'.:: m + 1, it follows that I G!~l I -+ 0 as lz l --+ oo. Therefore, for
any E > 0, there exists R. > 0 such that
I
P(z) 1 <~
Q (z) 1T
(8- 1 5)
whenever lzl ~ R •. Using the ML inequality {Theorem 6.3) together with In-
equality (8-15), we get
I
{ exp(iz)P(z) dzl ~ { ~ lei•i ldzl ,
Jen Q (z) JcR. 1T
(8-16)