320 CHAPTER 8 • RESIDUE THEORY
where g is analytic at z = to. Using the parametrization of Gr and Equation
(8-23), we get
1 1
" ir·e•o d8 1"..
f (z) dz= Res [f , to) --. 8 - + ir g (to+ re'^8 ) e'^8 d8
C r o re o
= i1rRes [f, to] + ir lo" g (to+ re•^8 ) e'^8 d8. (8-^24 )
A.$ g is continuous at t 0 , there is an M > 0 so that 19 (to+ rei^8 ) I :::; M, and
l
lim ir ("' g (to+ re•^8 ) ei^8 dOI :::; lim r {" MdO = lim r1rM = 0.
r-o lo r-0 lo r-o
Combining this inequality with Equation (8-24) gives the conclusion we want.
y
Figure 8.6 The poles ti, h,... , t1 off that lie on the x-axis and the poles z1, z2, ... ,
Zk that lie above the semicircles C1, C2, ... , C,.