1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
3 2 2 CHAPTER 8 • RESIDUE THEORY

co x^4 dx

6. P.V. f -cox - 6 - - l.

7. P.V. f~oo sinx dx.
x

S. P.V. I"'° cosx dx.
J-oo x2 - x

co sinx dx

9.P.V.f -cox (11' (^2) - x 2 ).
co cosx dx


1 0. P.V. f 2 2.


  • co 11' - 4x


co sinx dx


  1. P.V. f - (^00) xx ( (^2) + 1 ).

  2. P.V. Joo xcosx dx.



  • co x^2 + 3x + 2


co sinx dx


  1. P.V. J_ 00 ( 2 ).
    x 1 - x


J


oo COSX dx
14. P.V. _ 00 2 2.
a - x



  1. P.V. J~ 00 sin


2
x~ dx. Hint: Use trigonometric identity sin^2 x = ~ - ~cos 2x.

8.6 Integrands with Branch Points

We now show how to evaluate certain improper real integrals involving the inte-
grand x"' ~~=~. The complex function z"' is multivalued, so we must first specify
the branch to b e used.
Let a be a real number with 0 < a < I. In this section we use the branch
of z"' corresponding to the branch of the logarithm log 0 (see Equation (5-20)) as
follows:

z"' = e"'{log.,(z)] = e<>(lnlzl+iarg 0 z) = ea(lnr+i8) = r" (cosa8 + i sin a-8), {8-28)

where z = rei^8 f= 0 and 0 < 8 ~ 211'. Note that this is not the traditional
principal branch of z" and that, as defined, the function z" is analytic in the
domain {re'^9 : r· > 0, 0 < 8 < 211' }.
Free download pdf