1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1

  1. 7 • THE ARGUMENT PRINCIPLE AND ROUCHE'S THEOREM 327


oo x' dx
3 .P.V.fo 2·
(1 + x)
l
oo X'l dx


  1. P.V. fo -1 2 ·

    • x
      p roo In (x^2 + 1) d.x
      5 .. v.Jo x2+ 1 Hint: Use the integrand f (z) =




(^10) ~~~ii).
oo lnx dx
6 .P.V.fo 2·
(1 + x^2 )



  1. P.V. J 000 In~~:.. x), where 0 <a< 1.


8 P V
roo lnx d.x

... Jo 2 , where a > O.
(x+ a)


J


oo sinx.. exp(iz)


  1. P.V. _ 00 x dx. Hint: Use the mtegrand f (z) = z
    contour C in Figure 8.8. Let r--+ 0 and R--+ oo.


and the

oo sin^2 x.. 1 - exp (i2z)

IO. P.V. J_ 00 - 2 - dx. Hint: Use the mtegrand f (z) = 2 and

x z
the contour C in Figure 8.8. Let r --+ 0 and R --+ oo.


  1. The Fresnel integrals J 0
    00


cos (x^2 ) dx and f 0

00
sin (x^2 ) dx are important in
the study of optics. Use the integrand f (z) =exp (- z^2 ) and the contour C
shown in Figure 8.9, and let R --+ oo to get the value of these integrals. Use
the fact from calculus that J;" e-x• d.x = Jl

y

R

Figure 8.9

8.7 The Argument Principle and Rouche's Theorem

We now derive two results based on Cauchy's residue t heorem. They have im-
portant practical applications and pertain only to functions all of whose isolated
singularities are poles.
Free download pdf