- 7 • THE ARGUMENT PRINCIPLE AND ROUCHE'S THEOREM 327
oo x' dx
3 .P.V.fo 2·
(1 + x)
l
oo X'l dx
- P.V. fo -1 2 ·
- x
p roo In (x^2 + 1) d.x
5 .. v.Jo x2+ 1 Hint: Use the integrand f (z) =
- x
(^10) ~~~ii).
oo lnx dx
6 .P.V.fo 2·
(1 + x^2 )
- P.V. J 000 In~~:.. x), where 0 <a< 1.
8 P V
roo lnx d.x
... Jo 2 , where a > O.
(x+ a)
J
oo sinx.. exp(iz)
- P.V. _ 00 x dx. Hint: Use the mtegrand f (z) = z
contour C in Figure 8.8. Let r--+ 0 and R--+ oo.
and the
oo sin^2 x.. 1 - exp (i2z)
IO. P.V. J_ 00 - 2 - dx. Hint: Use the mtegrand f (z) = 2 and
x z
the contour C in Figure 8.8. Let r --+ 0 and R --+ oo.
- The Fresnel integrals J 0
00
cos (x^2 ) dx and f 0
00
sin (x^2 ) dx are important in
the study of optics. Use the integrand f (z) =exp (- z^2 ) and the contour C
shown in Figure 8.9, and let R --+ oo to get the value of these integrals. Use
the fact from calculus that J;" e-x• d.x = Jl
y
R
Figure 8.9
8.7 The Argument Principle and Rouche's Theorem
We now derive two results based on Cauchy's residue t heorem. They have im-
portant practical applications and pertain only to functions all of whose isolated
singularities are poles.