1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
9.2 • SECOND-ORDER HOMOGENEOUS DIFFERENCE EQUATIONS 363

Thus the solution is

y[n] = Res[f(z), 1] + Res[f(z), 3)

= -1+2. 3»,


which agrees with the result of Example 9. 12.

(b) Take the z-transforms of each term

.z^2 (Y(z)-1- 3z-^1 ) - 4(z(Y(z)-1)) + 3(Y(z)) = z ~

2

.

S 1 £ Y( ) d ( ) z

(^3) - 3z (^2) + 6z
o ve or z an get Y z = (•-l)(z- 2 )(%-3)"
Calculate the residues for f (z) = Y(z)zn- l = z
3


-^3 •
2
(z-l)(z-2)(z±^6 • -3) zn-1 at
the poles


[ ( ) I. z


(^3) - 3z (^2) + 6z n-I n -I


Res f z , 1 = z-1 hrn ( z. - 2 )( Z - 3 ) z = 2 · 1 = 2, and

= lim z3 - 3z2 + 6z zn-1 = - 8. 2n-1 = -2n+2 and

z- 2 (z - l)(z - 3) •

Res[f(.z), 3] = lim z3 - 3z2 + 6z = 9. 3n-I = 3n±1 _

z- 3 (z - l)(z - 2)

Thus the solution is

y{n] = Res[f(z), 1) + Res[f(z), 2) + Res[f(z), 3]
= 2 - 2n+2 + 3n±1.


  • EXAMPLE 9.16


(a) Use z-transforrn methods to solve y[n + 2) - 4y[n + l ] + 4y(n) = 0 with

y(O] = Yo = 1 and y (l] =YI = 5.

(b) Use z-transforrn methods to solve y(n + 2] - 4y(n + 1) + 4y[n) = 3n


wit h y[OJ = Yo = 2 and y(l] = YI = 3.

Solution


(a) Take the z-transforms of each term

z^2 (Y(z) - 1 - 5.z-^1 ) - 4(z(Y(z) - 1)) + 4(Y (z)) = O.


Solve for Y(z) and get Y(z) = (~~"t)2·
Free download pdf