1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
9.2 • SECOND-ORDER HOMOGENEOUS DIFFERENCE EQUATIONS 365

Solution


(a) Take the ~transform of each term

z^2 (Y(z) - 1 - 5z-^1 ) - 4(z(Y(z) - 1)) + 5(Y(z)) = 0.

Solve for Y(z) and get Y(z) = z'/.ifz"+s = (z-2.::rrz·-2-i)'


Calculate the residues of for f(z) = Y (z)zn-I = (z-z.::)t;_ 2 _i)zn-l

at the poles

Res[f(z), 2 + i) = Jim. z


2
+ z. zn-l =^5 -^5 i (2 + i)n-1
z-+2+i(z - 2+t) 2

=-1 --3i ( 2 +i ·}n an d
2 '

R es [/( z )^2 -i·1 -- 1· im z2 + z z n- 1 -- --5 + 5i(2 -i ·)n-1
' • - 2 - i (z - 2 - i) 2
= 1 + 3i ( 2 _ i}n.
2

Therefore, the solution is

y[n] = Res[/(z), 2 + i] + Res(/(z), 2 - i]

yn [ 1 = 1 -- 3i ( 2 ·)n^1 + 3i ( 2 ·}n
2




    • t + -
      2



        • t ,








which agrees with the result of Example 9.14.

Remark 9.9

Observe that Res[f(z), 2-i] = Res[/(z), 2 + i] = Res[f(z) , 2 + i].

(b) Take the ~transform of each term

2 z z

z (Y(z) - 1 - oz-^1 ) - 4(z(Y(z) - 1)) + 5(Y(z)) =. +

1

.
z - 1 - i z- + i

S o ve 1 f or Y( z ) an d ge t Y( z } = (•- I+i)(z•^4 - 6z-l-i)(^3 + 1z-2+i)(2z^2 - 10z z-2-i) ·

Calculate the residues of f (z) = Y(z)zn-l =

z^4 - 6z^3 +12z^2 - 10z zn-1
(z- l+iHz-l-i)(z-2+i)(z-2-i)




Free download pdf