1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1

  1. 4 • THE GEOMETRY OF COMPLEX NUMBERS, CONTINUED 29


•EXAMPLE 1.13 If z = 1 + i , then r = lzl = viz and (} = Argz = ~·


Therefore, z-^1 = ~ [cos ( - 4 " ) + i sin ( -;r)] = ~ [ ~ -i~] and has modulus

72-^1 - .ill 2.

• EXAMPLE 1.14 If z1 = Bi and z2 = 1 + iv'3, then representative polar

forms for these numbers are z 1 = 8 (cos~ + i sin I) and z 2 = 2 (cos~ + i sin! ).

Hence


-------~EXERCISES FOR SECTION 1.4


  1. Find Arg z for t he following values of z.


(a) I - i.
(b) -J3+i.
(c) (- 1 -iv'3)^2.
( d) (1 - i )^3.

(e) i+~Ja·
(f) i~l.

() g 1H1 (l+i).

(h) (1 +iJ3) (1 + i).


  1. Use exponential notation to show that


(a) ( J3 -i) (1 + iv'3) = 2)3 + 2i.
(b) (1 + i)^3 = - 2 + 2i.
(c) 2i(v'3+ i) (l+i/3) = - 8.
(d) i!i = 4 - 4i.


  1. Represent t he following complex numbers in pola.r form.


(a) - 4.
(b) 6 - 6i.
(c) - 7i.
Free download pdf