11. 5 • STEADY STATE TEMPERATURES 457
- Find the temperature function T (x, y) in the upper half-plane Im (z) > 0 that
satisfies t he following boundary conditions (shown in Figure 11.31).
T(x, 0) = 100
T(x, 0) = -100
{}T
&n = Ty (x, 0) = 0
l:JT
(}n = T 11 (x, 0) = 0
y
for 0 < x < 1;
for - 1 < x < O;
for x > l;
forx<-1.
ar -oT=- 100 T=looar - o
an - an -
Figure 11.31
- Find the temperature function T (x, y) in the first quadrant x > 0, y > 0 that
satisfies the following boundary conditions (shown in Figure 11.32).
T(x, 0) = 50,
T(O, y) = - 50,
{}T
&n = Tx (0, y) = 0,
ar _
an -^0
y
0 T=SO
Figure 11. 32
- For the temperature function
for x > O;
fory > l ;
for 0 < y < 1.
T (x, y) = 1 00--^100 Arctan 1 - x^2 -^2
2
y
11' y