11 .9 • THE SCHWARZ-CHRISTOFF.EL TRANSFORMATION 495
- Show that w = f (z) = (z - l)" [l + az/ (1 - a))^1 - " maps the upper half-plane
Im (z) > 0 onto the upper half-plane Im (w) > 0 slit along the segment from 0 to
e'" ~, as shown in Figure 11.83.
Hint: Show that/' (z) =A [z + (1-a) far"' (z) (z -1)"-^1.
Figure 11.83
' (z+1)i- 1 i - (z+l)t
10. Show that w = f (z) = 4 (z + l)" +log 1 + ilog l maps
(z+l)i +l i+(z+l)
the upper half-plane onto the domain indicated in Figure 11.84. Hint: Set z1 =
- 1, z2 = 0, w 1 = i1T, and W2 = - d and let d-+ co. Use the change of variable
z + 1 = s^4 in the resulting integral.
v
u
Figure u.84
- i i
- Show that w = f (z) = -z• (z - 3) maps the upper half-plane onto the domain
z
indicated in Figure 11.85. Hint: Set x 1 = 0, x2 = 1, w 1 = -d, and w2 = i and let
d-> o.
v
"
Figure 11.85
J
dz
- Show that w = f (z) = 3 maps the upper half-plane Im (z) > 0 onto a
(1 -z2)•
rig ' ht tnang. I e wit "h ang I es 1T 2, ... 4 , an d 4 · ... - Show that w = f (z) = J dz 1 maps the upper half-plane onto an equilateral
( l - z^2 ) •
triangle.