12.l • FOURIER SERIES 519
The value of the first integral on the right side of this equation is 27T, and all the
other integrals are zero. Thus,
<l() = ; 11" _.,. u (t) dt.
To determine a,,., we let m (m > 1) denote a fixed integer and multiply both U (t)
and the Fourier series representation in Equation (12-1) by the term cos mt. We
then integrate to obtain
J:,, U(t)cosmt dt = a
2
° [ cosmt dt (12-5)
- ~ = ai 1" .,.cos mt cos jt dt + ~ = bj 1" ,, cos mt sin jt dt.
The value of the first term on the right side of Equation (12-5) is easily seen to
be zero:
ao 1" d _ aosinmt
1
.,, _ 0
2
cos mt t -
2
_.,. -.
_.,, m
(12-6)
We find the value of the term involving cosmtcosjt by using the trigonometric
identity:
cos mt cosjt = ~{cos ((m + j) t) +cos [(m -j) t)}.
Calculation reveals that if m =/= j and m > 0, then
ai L: cosmtcosjt dt =a;' {1-: cos((m+ j)t]dt
- L: cos [(m -j) t] dt} = o.
When m = j, the value of the integral becomes
am L: cos
2
mt dt =?Tam.
(12-7)
(12-8)
We find the value of the term on the right side of Equation (12-5) involving the
integrand cos mt sin jt by using the trigonometric identity
cosmtsinjt = ~ {sin[(m+j)t) +sin[(m-j)t]}.
Then, for all values of m and n, we have
bj L: cosmtsinjtdt= b; {1-: sin ((m+j)t]dt+ 1-: sin[(m- j)t)dt} =O.
(12-9)