548 CHAPTER 12 • FOURlER SERIES AND THE LAPLACE TRANSFORM
Definition .C (! (t)) = F (s).
First derivative .C(f'(t)) = sF(s)-f(O).
Second derivative .C(f"(t)) = s^2 F(s)-sf(O)-f' (0).
Integral .C (J~ f (r) dr) = F ;s).
Multiplication by t C (tf (t)) = -F' (s).
Division by t .C ( f ~t)) = f 8
00
F (11) d<1.
s-axis shifting C (e"t f (t)) = F (s -a).
t-a.xis shifting .C (U., (t) f (t - a))= e-^0 • F (s), for a> O.
Convolution .C(h(t)) = F(s)G(s),
where h (t) = J~ f (t -r) g (r) dr.
Table 12 .S Properties of the Laplace Transform
- ------~EXERCISES FOR SECTION 12.5
- Show that .C(l) =! by using the integral definition of the Laplace transform.
s
Assume thats is restricted to values satisfying Re(s) > O.
- Show that .C(l) =! by using the integral definition of the Laplace transform.
- Let U (t) = { 1, 0, otherwise. for^1 <. t < 2;
Find l. ( f (t)).
- Let U(t) = { ~.
Find l. ( f (t)).
forO:S:t<c;
otherwise.
- Show that .C ( t^2 ) =^23 by using t he integral definition for the Laplace transform.
s
Assume that s is restricted to values satisfying Re ( s) > 0. - Let U(t) = { e••, for 0 '.S_t < l;
0, otherwise.
Find l. (/ (t)).
6. Let U (t) = { ~i'n (t)'
Find l. (! (t)).
for 0 :S: t :S: ?rj
otherwise.
For Exercises 7- 12, use the linearity of Laplace transform and Table 12.2.
- Find l.(3t^2 -4t+5).