12 .7 • SHIFTING THEOREMS AND THE STEP FUNCTION 5 5 7
1 s
We now use Theorem 12.16 and the facts that - and - 2 --are the transforms
s s + 1
of 1 and cost, respectively. We compute the solution, y(t), as
(
e-w•) ( e-"s s)
y (t) = c-^1 -
8
- -c-^1 82 +
1
= U,, (t)- U" (t)cos(t - 11'),
which we then write in the more familiar form
Y (t ) - { - 0 , 1 - cost,
fort< 11';
fort>11'.
- ------.-EXERCISES FOR SECTION 12.7
- Find .C (e' -te').
2. Find .C (c^4 'sin3t).
)
s - a
- Show that .C(e•'cosbt = ( )2 2 ·
s-a +b
- Show that .C (e•• sinbt) = ( ~ 2 b2.
s-a +
For Exercises 5-8, find c-^1 (F (s) ).
s+2
5. F (s) = z 4 5.
s + s+
8
- F(s) = s (^2) - (^2) s+ 5
7.F(s)= s+3
(s +2)^2 + 1 •
2 s+ 10
S. F (s)= s2+6s+25'
For Exercises 9-14, find L (f (t)).
- f (t) = U2 (t) (t - 2)^2.
10. f (t) = U1 (t) e^1 - •.
11. f (t) = U3,. (t) sin (t - 311').
12. f (t) = 2U1 (t) - U2 (t) - U3 (t).
1 3. Let f (t) be as given in Figure 12 .25.