564 CHAPTER 12 • FOURIER SERIES AND THE LAPLACE TRANSFORM
s^3 -4s+l.
• EXAMPLE 12.24 Let Y (s) = 3. Find c-^1 (Y (s)).
s(s- 1)
Solutio n From Equations (12-37) and (12-38) we write
s^3 - 4s - 1 A3 A2 A1 Bi
-----, 3 .-= 3 + 2 +--+-.
s(s-1) (s-1) (s - 1) s - 1 s
We calculate the coefficient B 1 by
Bi = Res (Y, OJ = Jim 53 - 4s + 1 = -1.
•- o (s - 1)3
We find the coefficients Ai, A2, and A3 by using Theorem 12.20. In this case
P (s) s^3 - 4s+l
a=land Q(s) = s ,and we get
A3 = Jim p (s) = lim s3 - 4s + 1 = -2;
•- 1 Q (s) s-1 s
A2 = 111 lim dd QP((s)) = lim (2s - 12) = 1;
. 8 -+l s s s - 1 s
- d
2
P(s) 1. ( 2)
Ai = - 2 hm -d 2 Q ( ) = - 2 hm 2 + 3 = 2.
•- 1 s s •- 1 s
Hence the partial fraction representation is
- 2 1 2 1
Y(s)= + +-- -
(s-1)3 (s-1)^2 s - 1 s'
and the inverse is