1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
12.10 • CONVOLUTION 573

Figure 12.28 The region of integration in the convolution theorem.


Table 12 .4 lists the properties of convolution.

Commutative
Distributive
Associative
Zero

fg=gf

f * (g + h) = f * g + f * h
U*u) *h = t * (9* h)
f *0=0

Table 12 .4 Properties of Convolution


•EXAMPLE 12.29 Show that .c-^1 (

28
(s^2 + 1)^2 ) = tsint.

Solution lfweletF(s)=- 2
1
,G(s)=- 2


28

,/(t)=sint,g(t)=2cost,

s +l s +l

respectively, and apply the convolution theorem, we get


c-^1 (~-#--) = c-^1 (F (s) G (s)) = f

1
2sin (t - r) COST dr
s + 1 s + 1 } 0

= 1t [2sintcos^2 r - 2costsinrcosr] dr


= sin t (r +sin T cos r) -cost sin^2 rl~~~
= tsint+sin^2 tcost-costsin^2 t = tsint.


  • EXAMPLE 12 .30 Use the convolution theorem to solve the integral equa-
    tion


f(t)=2cost-1

1

(t-r)f(r) dr.
Free download pdf