ANSWERS 601
lnv'2-t+i(lnv'2+~-1).
Log (1 + i) - Log (2) + Log (2 + i) =-~In J2 +In J5 + i (~+Arc tan 4).
15. Parametrize C with z (t) = z1 + (zz -z 1) t, 0 ~ t ~ 1. Then we see that
fc ldz = Jd z' (t) dt = f 0
1
(z2 - zi) dt = (z2 - zi) ti:~~= z2 - z1.
l 7a. J5( cos(0.46) + i sin(0.46)) - 3.
- We know that an antiderivative of the function f g' +gf' is Jg by the product
rule. Since f g' and gf' are analytic (explain why!), Theorem 6.9 gives us
fc!f(z)g'(z)+g(z)f'(z)]dz = f(z)g(z)I;~;:. The conclusion follows
from this.
Section 6.5. Integral Representations for Analytic Functions: p age
239
- 47ri.
- -i~.
5. -i~. - 27ri.
(^9) · (n2,,; -1)! ·
1 1. i - ii.
13a. i7r sinh 1.
13b. i7r sinh 1.
15 a. 71'.
15b. -71'.
- o.
- Let f (z) = (z^2 - lf, which is analytic everywhere. By Cauchy's integral
< lOrm ul as, •n n ( z ) - 1 J (n) ( ) I [ n! f f({) d'"] Th J ·
2 "n! z - z•n! 2ii1 Jc ({-•)"+^1 .,. e cone us1on
follows from this. Show the details.
Section 6.6. The Theorems of Morera and Liouville and Some Appli-
cations: page 247
la. (z+ 1 +i)(z+ l -i)(z-1 +i) (z - 1 - i).
l e. (z + i) (z -i) (z + 2 - i) (z - 2 -i).