1549380232-Automorphic_Forms_and_Applications__Sarnak_

(jair2018) #1

  • Armand Borel 1923-

  • Arthur's conjectures Lecture 2. The spectral decomposition of L^2 (G(Q)\G(A)):

  • method Lecture 3. Known bounds for the cuspidal spectrum and the Burger-Sarnak

  • Lecture 4. Applications: control of the spectrum

  • Appendix: All reductive adelic groups a re tame

  • Bibliography

  • James W. Cogdell, £-functions and Converse Theorems for GLn

  • Introdu ction

  • Lecture l. Fourier expansions and multiplicity one

  • Lecture 2. Eulerian integrals for GLn

  • Lecture 3. Local £-functions

  • Lecture 4. Global £-functions

  • Lecture 5. Converse theorems

  • Lecture 6. Converse theorems and functoriality

  • Bibliography

  • Automorphic £-functions Philippe Michel, Analytic Number Theory and Families of

  • Foreword

  • Lecture l. Analytic properties of individual £-functions

  • Lecture 2. A review of classical automorphic forms

  • Lecture 3. Large sieve inequalities

  • Lecture 4. The subconvexity problem

  • Lecture 5. Some applications of subconvexity

  • Bibliography

  • Freydoon Shahidi, Langlands-Shahidi Method

  • Foreword

  • Lecture l. Basic concepts

  • Lecture 2. Eisenstein series and £-functions

  • Lecture 3. Functional equations and multiplicativity

  • Lecture 4. Holomorphy and boundedness; applications CONTENTS xi

  • Bibliography

  • Audrey Terras, Arithmetical Quantum Chaos

  • Abstract

  • Lecture 1. Finite models

  • Lecture 2. Three symmetric spaces

  • Bibliography

  • David A. Vogan, Jr, Isolated Unitary Representations.

  • Bibliography

  • Hypergraphs Wen-Ching Winnie Li, Ramanujan Graphs and Ramanujan

  • Introduction

  • Lecture 1. Ramanujan graphs and connections with number theory

  • Lecture 2. Ramanujan hypergraphs

  • Bibliography

Free download pdf