1549380232-Automorphic_Forms_and_Applications__Sarnak_

(jair2018) #1
BIBLIOGRAPHY 291

on number theory in memory of Kustaa Inkeri, Turku, Finland, May 31-
June 4, 1999. Berlin: de Gruyter. 167-177 (2001). [ISBN 3-11-016481-
7/ hbk]
[JM] Jutila, M.; Motohashi, Y. Mean value estimates for exponential sums and
L-functions: a spectral-theoretic approach. J. Reine Angew. Math. 459
(1995), 61-87.
[Ki] Kim, H.,Functoriality for the exterior square of G L 4 and symmetric fourth
of G L 2 , Appendix 1 by Dinakar Ramakrishnan; Appendix 2 by Henry H.
Kim and Peter Sarnak, J. Amer. Math. Soc. 16 (2003), 139 -183.
[KiSa] Kim, H., Sarnak, P.,Appendix: refined estimates towards the Ramanujan
and Selberg Conjectures, J. Amer. Math. Soc. 16 (2003).
[KiSh] Kim, H., Shahidi. F., Functorial products for GL 2 x GL 3 andfunctorial sym-
metric cube for GL 2. (with an appendix by C. J. Bushnell and G. Henniart)
Annals of Math. Volume 155 , No. 3, 837 -893 (2002).
[KiSh2] Kim, H., Shahidi. F.,Cuspidality of symmetric powers with applications,
Duke Math. J. 112 (2002), no. 1, 177-197.
[Ko] Korobov, N. M.Estimates of trigonometric sums and their applications.
(Russian) Uspehi Mat. Nauk 13 1958 no. 4 (82), 185-192.
[Kow] E. Kowalski, Dependency on the group in automorphic Sobolev inequal-
ities Forum Math. (to appear).
[KrS] B. Kroetz, R. J. Stanton Holomorphic extension of representations: (I)
automorphicfunctions. Ann. of Math. (2) 159 (2004), no. 2, 641-724.
[KMl] E. Kowalski, Ph. Michel, Sur les zeros des fonctions L automorphes de
grand niveau, Preprint de l'Universite d' Orsay 54 (1997).
[KM2] E. Kowalski, Ph. Michel, The analytic rank of J 0 (q) and zeros of automor-
phic L-functions, Duke Mathematical Journal 100, 3 (1999), p. 503-542.
[KM3] E. Kowalski, Ph. Michel, Zeros of families of Automorphic L-functions close
to 1, Pacific Journal of Mathematics 207 (2002), 411-431.
[KMVl] E. Kowalski, Ph. Michel, J. VanderKam, Mollification of the fourth mo-
ment of automorphic L-functions and arithmetic applications, Inventiones
Mathematicae, 142, l , p.95-151 (2000).
[KMV2] Kowalski, E., Michel, Ph., Vanderkam, J .: Rankin-Selberg L functions in
the level aspect, Duke Math. J. 114 (2002), no. 1, 123-191.
[La] Landau, E., Uber die Anz ahl der Gitterpunkte in gewissen Bereichen.
(ZweiteAbhandlung.) Gott. Nachr. 1915 , 209-243. Published: 1915. and
Collected works. Ed. by P. T. Bateman, L. Mirsky, H. L. Montgomery, W.
Schaal, I. J. Schoenberg, W. Schwarz, H. Wefelscheid. Volume 6. [B]
Essen: Thales Verlag. 512. p. DM 224.00 (1986). [ISBN 3-88908-215-7]
[Lin] Lindenstrauss, E., Invariant m easures and arithmetic quantum unique er-
godicity. Ann. of Math. (2) 163 (2006), no. 1, 165-219.
[Li] W. Li, Newforms and functional equations., Math Ann. 212 (1975), 285-
315.
[Li2] W. Li, L-series of Rankin Type and their functional equations, Math Ann.
244135-166(1979).
[Linl] Linnik, Yu.V. The large sieve. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 30,
292-294 (1941).
[Lin2] Linnik, Yu. V.: On. the least prime in an arithmetic progression, I, II, Rec.
Math (Mat. Sbornik) N.S. 15 (57) (1944), 139-178 and 347-368.

Free download pdf