BIBLIOGRAPHY 293
[Mor3] Moreno, Carlos J. Some problems of effectivity in arithmetic, geometry and
analysis. Number theory (New York, 1982), 252-272, Lecture Notes in
Math., 1052, Springer, Berlin, 1984.
[Mot] Motohashi, Y6ichi. The binary additive divisor problem. Ann. Sci. Ecole
Norm. Sup. (4) 27 (1994), no. 5, 529-572.
[O] Oesterle, J.,Nombres de classes des corps quadratiques imaginaires. Semin.
Bourbaki, 36e annee, Vol. 1983/84, Exp. 631, Asterisque 121-122, 309-
323 (1985).
[Pe] Peng, A., PhD Thesis, Princeton University 2001.
[PS] Petridis, Y. N.; Sarnak, P. Quantum unique ergodicity for SL 2 (0)\ H^3 and
estimates for £-functions. Dedicated to Ralph S. Phillips. J. Evol. Equ. 1
(2001), no. 3, 277-290.
[Pi] Pitt, Nigel J. E.On shifted convolutions of (3(s) with automorphic £-
functions. Duke Math. J. 77 (1995), no. 2, 383-406.
[PS] Phillips, R. S.; Sarnak, P. On cusp forms for co-finite subgroups of
PSL(2, R). Invent. Math. 80 (1985), no. 2, 339-364.
[PS2] Phillips, R.; Sarnak, P. Perturbation theory for the Laplacian on automor-
phic functions. J. Amer. Math. Soc. 5 (1992), no. 1, 1-32.
[Pr] Proskurin, N.V. Summation formulas for general Kloosterman sums. (Eng-
lish) J. Sov. Math. 18, 925-950 (1982).
[Ral] Ramakrishnan, D., Pure motives and automorphic forms. Motives (Seat-
tle, WA, 1991), 411-446, Proc. Sympos. Pure Math., 55, Part 2, Amer.
Math. Soc., Providence, RI, 1994.
[Ral] Ramakrishnan, D., Modularity of the Rankin-Selberg £-series, and multi-
plicity one for SL(2), Annals of Math. 152 (2000), 45-111.
[Ra2] Ramakrishnan, D., Expository talk at the IAS on Siegel zeros available at
http://math.caltech.edu/papers/ ramak. pdf.
[RaW] Ramakrishnan, D., Wang, S., On the exceptional z eros of Rankin-Selberg
L-functions, Compositio Math. 135 (2003), no. 2, 211-244.
[Ran] Rankin. Contributions to the theory of Ramanujan's function T(n) and
similar arithmetical functions. I, II, III., Proc. Camb. Philos. Soc. 35, 35
and 36, 351-356 (1939), 357-372 (1939), 150-151 (1940).
[Ri] Ribet, K. A. On modular representations of Gal( Q / Q) arising from modu-
lar forms. Invent. Math. 100 (1990), no. 2, 431-476.
[Ro] Royer, E.: Statistique de la variable L(sym^2 f , 1), Math. Ann. 321, No.3,
667-687, (2001).
[Ro2] Royer, E.: Interpretation combinatoire des moments negatifs des valeurs de
fonctions Lau bard de la bande critique , Ann. Sci. Ecole Norm. Sup. ( 4)
36 (2003), no. 4, 601-620.
[Ro Wu] Royer, E., Wu, J.: Taille des valeurs de fonctions L de carres symetriques
au bard de la bande critique. Rev. Mat. Iberoamericana 21 (2005), no. 1,
263-312.
[Ru] Rudnick Z. On the asymptotic distribution of zeros of modular forms. Int.
Math. Res. Not. 2005, no. 34, 2059-2074.
[RS] Rudnick Z., Sarnak, P. The behaviour of eigenstates of arithmetic hyperbolic
manifolds. Comm. Math. Phys. 161 (1994), no. 1, 195-213.
[RS2] Z. Rudnick, P. Sarnak, Zeros of principal £-functions and random matrix
theory, A celebration of John F. Nash, Jr. Duke Math. J. 81 (1996), no.