1549380232-Automorphic_Forms_and_Applications__Sarnak_

(jair2018) #1
BIBLIOGRAPHY 295

Paris, 1990. pp. 1-135.
[Ta] Tatuzawa, T., On a theorem of Siegel. Jap. J. Math. 21 (1951), 163-178
(1952).
[Te] Tenenbaum, G., Introduction a la theorie analytique et probabiliste des
nombres. 2eme ed. (French) Cours Specialises. 1. Paris: Societe Mathe-
matique de France. xv, 457 p. FF 450.00 (1995).
[TV] Takhtadzhyan, L.A., Vinogradov, A.I. The zeta-function of the additive di-
visor problem and spectral decomposition of the automorphic Laplacian. J.
Sov. Math. 36, 57-78 (1987).
[TW] Taylor, R., Wiles A.: Ring theoretic properties of certain Hecke algebras,
Annals of Math. 141, No. 3 (1995), 553-572.
[VP] De la Vallee Poussin, Ch. J. Recherches analytiques sur la theorie des nom-
bres premiers. Brux. S. sc. 21 B, 183-256, 281-362, 363-397. (1896)
[VP2] De la Vallee-Poussin, Ch. J. Sur lafonction ((s) de Riemann et le nombre
des nombres premiers inferieurs a une limite donnee. Belg. Mem. cour. in
8°, 59, 74 S. Published: (1899)
[Vdk] VanderKam, Jeffrey M. The rank of quotients of J 0 (N). Duke Math. J. 97
(1999), no. 3, 545-577.
[Vdk2] VanderKam, Jeffrey. Linear independence of Hecke operators in the homol-
ogy of X 0 (N). J. London Math. Soc. (2) 61 (2000), no. 2, 349-358.
[Va] Vatsal, V., Uniform distribution of Heegner points, Invent. Math. 148,
No.I, 1-46 (2002).
[Ve] Venkatesh, V., Sparse equidistribution problems, period bounds, and sub-
convexity, Preprint (2005).
[Vi] Vinogradov, I. MA new estimate of the function ((1 +it). (Russian) Izv.
Akad. Nauk SSSR. Ser. Mat. 22 1958 161-164.
[Wal] Waldspurger, J-L. Surles coefficients de Fourier des formes modulaires de
poids demi-entier, J. Math. Pures et Appliquees 60 (1981), 374-484.
[Wa] Watkins, M.,Class numbers of imaginary quadratic fields. Math. Comp. 73
(2004),no.246,907-938
[Wat] Watson, T., Rankin triple products and quantum chaos, Annals of Math.
(to appear).
[Wats] G. N. Watson, A Treatise on the Theory of Bessel Functions, Reprint of
the second (1944) edition. Cambridge Mathematical Library. Cambridge
University Press, Cambridge, 1995, viii +804 pp.
[We] Weyl, H., Zur Abschatzung von ((1 + ti). Math. Zeitschr. 10, 88-101
(1921).
[Wi] Wiles, A.: Modular elliptic curves and Fermat's last theorem, Annals of
Math. 141, No. 3 (1995), 443-551.
[Wo] Wong, S.:Automorphic forms on GL(2) and the rank of class groups. J.
Reine Angew. Math. 515 (1999), 125-153.
[Ze] Zelditch, S., Duke Math. Journal, 55 (1987), 919-941.
[Zl] Zhang, S., Heights of Heegner points on Shimura curves, Ann. Math. 153,
27-147 (2001)
[Z2] Zhang, S., Gross-Zagier formula for GL(2), Asian J. Math. Vol 5, N2,
2001.
[Z3] Zhang, S., Gross-Zagier formula for GL(2). II. Heegner points and Rankin
£-series, 191-214, Math. Sci. Res. Inst. Publ., 49, Cambridge Univ. Press,
Cambridge, 2004.

Free download pdf