Phase space and partition functions 223
N , V , E 2 2 2
H 2 ( x 2 )
N , V , E
H ( x )
1 1 1
1 1
Fig. 5.1Two systems in contact with a common thermal reservoir at temperatureT. System
1 hasN 1 particles in a volumeV 1 ; system 2 hasN 2 particles in a volumeV 2. BothV 1 andV 2
can vary.
volumes, sayV 1. Thus, we write the correct canonical partition function for the total
system as
Q(N,V,T) =g(N,N 1 ,N 2 )
∫V
0
dV 1 Q 1 (N 1 ,V 1 ,T)Q 2 (N 2 ,V−V 1 ,T). (5.3.10)
The canonical phase space distribution functionf(x) of the combined system 1
and 2 is
f(x) =
CNe−βH(x)
Q(N,V,T)
. (5.3.11)
In order to determine the distribution functionf 1 (x 1 ,V 1 ) of system 1, we need to
integrate over the phase space of system 2:
f 1 (x 1 ,V 1 ) =
g(N,N 1 ,N 2 )
Q(N,V,T)
CN 1 e−βH^1 (x^1 )CN 2
∫
dx 2 e−βH^2 (x^2 )
=
Q 2 (N 2 ,V−V 1 ,T)
Q(N,V,T)
g(N,N 1 ,N 2 )CN 1 e−βH^1 (x^1 ). (5.3.12)
The distribution in eqn. (5.3.12) satisfies the normalization condition:
∫V
0
dV 1
∫
dx 1 f 1 (x 1 ,V 1 ) = 1. (5.3.13)
The ratio of partition functions can be expressed in terms of Helmholtz free energies
according to