1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Problems 261

Substituting eqns. (5.13.15) into eqn. (5.13.17) yields



i

F(c,ik)(∆t)·

[


v(1)i +

1


mi

RFv(μ,∆t)Si(∆t)


l

δμ ̃(1)l F(c,il)(∆t)

+ri(∆t)

(


v(1)ǫ +

1


W


S ̃ǫ(∆t)


j


l

δμ ̃(1)l rj(∆t)·F(c,jl)(∆t)

)]


= 0. (5.13.18)


As we did with eqn. (5.13.8), we can solve eqn. (5.13.18) as a full matrixequation, or
we can make the approximation of independent constraints and iterate to convergence
as in Section 3.9. When the latter procedure is used, eqn. (5.13.18) becomes



i

F(c,il)(∆t)·

[


v(1)i +

1


mi

RFv(μ,∆t)Si(∆t)δμ ̃(1)l F(c,il)(∆t)

+ri(∆t)

(


vǫ(1)+

1


W


S ̃ǫ(∆t)


j

δμ ̃(1)l rj(∆t)·F(c,jl)(∆t)

)]


= 0. (5.13.19)


DenotingF(c,il)·[v(1)i +vǫ(1)ri(∆t)] as ̇σl(∆t), eqn. (5.13.19) can be solved for the mul-


tiplier correctionsδ ̃μ(1)l to yieldδ ̃μ(1)l =−σ ̇l(∆t)/D, whereDis given by


D=



i

1


mi

RFv(λ,∆t)Si(∆t)F(c,il)(∆t)·F(c,il)(∆t)

+


1


W


Sǫ(∆t)

[



i

ri(∆t)·F
(l)
c,i(∆t)

] 2


. (5.13.20)


As in the first part of the ROLL algorithm, once a fully converged setof correction
multipliersδμ ̃(1)l is obtained, we update the pressure virial according to


P(vir)=

1


dV

∑N


i=1

[


ri·Fi+ri·


k

(


μ ̃(1)k +δμ ̃(1)k

)


F(c,ik)

]


. (5.13.21)


We then apply the operators in eqn. (5.13.11) again on the velocities and thevǫ
that emerged from the first part of the ROLL procedure in order to obtain a new
set of ROLL scalars and scaling factors. We cycle through this procedure, obtaining
successively smaller correctionsδμ ̃(ln), until the ROLL scalars stop changing.


5.14 Problems

Free download pdf