1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

282 Monte Carlo


For simplicity, we introduce the notation

dxφ(x)f(x) =〈φ〉f, (7.2.5)

where〈···〉findicates an average ofφ(x) with respect to the distributionf(x). We
wish to compute the probabilityP(y) that the estimatorI ̃Mwill have a valuey. This
probability is given formally by


P(y) =


dx 1 ···dxM

[M



i=1

f(xi)

]


δ

(


1


M


∑M


i=1

φ(xi)−y

)


, (7.2.6)


where the Diracδ-function restricts the integral to those sets of vectors x 1 ,...,xMfor
which the estimator is equal toy. Eqn. (7.2.6) can be simplified by introducing the
integral representation of theδ-function (see Appendix A)


δ(z) =

1


2 π

∫∞


−∞

dσeizσ. (7.2.7)

Substituting eqn. (7.2.7) into eqn. (7.2.6) and using the general property ofδ-functions
thatδ(ax) = (1/|a|)δ(x) yields


P(y) =M


dx 1 ···dxM

[M



i=1

f(xi)

]


δ

(M



i=1

φ(xi)−My

)


=


M


2 π


dx 1 ···dxM

[M



i=1

f(xi)

]∫



−∞

dσe

(∑M


i=1φ(xi)−My

)


. (7.2.8)


Interchanging the order of integrations gives


P(y) =

M


2 π

∫∞


−∞

dσe−iMσy


dx 1 ···dxM

[M



i=1

f(xi)

]


eiσ

∑M


i=1φ(xi)

=


M


2 π

∫∞


−∞

dσe−iMσy

[∫


dxf(x)eiσφ(x)

]M


=


M


2 π

∫∞


−∞

dσe−iMσyeMln


dxf(x)eiσφ(x)

=


M


2 π

∫∞


−∞

dσeMF(σ,y), (7.2.9)

where in the second line, we have used the fact that the integrals over x 1 , x 2 ,... in the
product are all identical. In the last line of eqn. (7.2.9), the functionF(σ,y) is defined
to be
F(σ,y) =−iσy+g(σ) (7.2.10)

Free download pdf