402 Quantum ensembles
〈Aˆ〉=
1
Q(N,V,T)
∑
k
g(Ek)e−βEk〈Ek|Aˆ|Ek〉. (10.4.7)
In an isothermal-isobaric ensemble at temperatureTand pressureP, the density
operator, partition function, and expectation value are given, respectively, by
ρ ̃(Hˆ,V) =
e−β(Hˆ+PV)
∆(N,P,T)
,
〈Ek| ̃ρ(Hˆ,V)|Ek〉=
e−β(Ek+PV)
∆(N,P,T)
, (10.4.8)
∆(N,P,T) =
∫∞
0
dVTr
[
e−β(
Hˆ+PV)]
=
∫∞
0
dV
∑
k
e−β(Ek+PV), (10.4.9)
〈Aˆ〉=
1
∆(N,P,T)
∫∞
0
dVTr
[
Aˆe−β(Hˆ+PV)
]
=
1
∆(N,P,T)
∫∞
0
dV
∑
k
e−β(Ek+PV)〈Ek|Aˆ|Ek〉. (10.4.10)
Again, if there are degeneracies, then a factor ofg(Ek) must be introduced into the
sums:
∆(N,P,T) =
∫∞
0
dV
∑
k
g(Ek)e−β(Ek+PV)
〈Aˆ〉=
1
∆(N,P,T)
∫∞
0
dV
∑
k
g(Ek)e−β(Ek+PV)〈Ek|Aˆ|Ek〉. (10.4.11)
Finally, for the grand canonical ensemble at temperatureTand chemical potential
μ, the density operator, partition function, and expectation valueare given by
ρ ̃(Hˆ,N) =
e−β(Hˆ−μN)
Z(μ,V,T)
,
〈Ek|ρ ̃(Hˆ,N)|Ek〉=
e−β(Ek−μN)
Z(μ,V,T)
, (10.4.12)
Z(μ,V,T) =
∑∞
N=0
Tr
[
e−β(
Hˆ−μN)]