1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

402 Quantum ensembles


〈Aˆ〉=


1


Q(N,V,T)



k

g(Ek)e−βEk〈Ek|Aˆ|Ek〉. (10.4.7)

In an isothermal-isobaric ensemble at temperatureTand pressureP, the density
operator, partition function, and expectation value are given, respectively, by


ρ ̃(Hˆ,V) =

e−β(Hˆ+PV)
∆(N,P,T)

,


〈Ek| ̃ρ(Hˆ,V)|Ek〉=

e−β(Ek+PV)
∆(N,P,T)

, (10.4.8)


∆(N,P,T) =


∫∞


0

dVTr

[


e−β(

Hˆ+PV)]


=


∫∞


0

dV


k

e−β(Ek+PV), (10.4.9)

〈Aˆ〉=


1


∆(N,P,T)


∫∞


0

dVTr

[


Aˆe−β(Hˆ+PV)

]


=


1


∆(N,P,T)


∫∞


0

dV


k

e−β(Ek+PV)〈Ek|Aˆ|Ek〉. (10.4.10)

Again, if there are degeneracies, then a factor ofg(Ek) must be introduced into the
sums:


∆(N,P,T) =

∫∞


0

dV


k

g(Ek)e−β(Ek+PV)

〈Aˆ〉=


1


∆(N,P,T)


∫∞


0

dV


k

g(Ek)e−β(Ek+PV)〈Ek|Aˆ|Ek〉. (10.4.11)

Finally, for the grand canonical ensemble at temperatureTand chemical potential
μ, the density operator, partition function, and expectation valueare given by


ρ ̃(Hˆ,N) =

e−β(Hˆ−μN)
Z(μ,V,T)

,


〈Ek|ρ ̃(Hˆ,N)|Ek〉=

e−β(Ek−μN)
Z(μ,V,T)

, (10.4.12)


Z(μ,V,T) =

∑∞


N=0

Tr

[


e−β(
Hˆ−μN)]
Free download pdf