1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

424 Quantum ideal gases


an electron from one of the occupied energy levels—is closely relatedto the Fermi
energy.


11.5.3 Zero-temperature thermodynamics


The fact that states of finite energy are occupied even at zero temperature in the
fermion gas means that the thermodynamic properties atT= 0 are nontrivial. Con-
sider, for example, the average particle number. In order to obtain an expression for
this quantity, recall that


〈N〉=



m


n

〈fnm〉=


m


n

θ(εF−εn) =g


n

θ(εF−εn). (11.5.35)

In the thermodynamic limit, the sum may be replaced by an integrationin spherical
polar coordinates


〈N〉=g


dnθ(εF−εn)

= 4πg

∫∞


0

dn n^2 θ(εF−εn). (11.5.36)

However, since the energy eigenvalues are given by


εn=
2 π^2 ̄h^2
mL^2

n^2 , (11.5.37)

it proves useful to change variables of integration fromntoεnusing eqn. (11.5.37):


n=

(


mL^2
2 π^2 ̄h^2

) 1 / 2


ε^1 n/^2

dn=

1


2


(


mL^2
2 π^2 ̄h^2

) 1 / 2


ε−n^1 /^2 dεn. (11.5.38)

Inserting eqn. (11.5.38) into eqn. (11.5.36), we obtain


〈N〉= 4πg

∫∞


0

dn n^2 θ(εF−εn)

= 2πg

(


mL^2
2 π^2 ̄h^2

) 3 / 2 ∫∞


0

dεnε^1 n/^2 θ(εF−εn)

= 2πg

(


mL^2
2 π^2 ̄h^2

) 3 / 2 ∫εF

0

dε ε^1 /^2
Free download pdf