The ideal fermion gas 429Performing the angular integrals, we obtain
ρ 1 (s) =4 π
V∫∞
0dn n^2 θ(εF−εn)L
2 πins(
e^2 πins/L−e−^2 πins/L)
=
4
L^2 s∫∞
0dn n θ(εF−εn) sin(
2 πns
L)
. (11.5.62)
For the remaining integral overn, transforming fromntoεnis not convenient because
of the sin function in the integrand. However, sincen >0, we recognize that the step
function simply restricts the upper limit of the integral by the condition
2 π^2 ̄h^2
mL^2n^2 < εFn <(
mL^2 εF
2 π^2 ̄h^2) 1 / 2
≡nF. (11.5.63)Therefore,
ρ 1 (s) =4
L^2 s∫nF0dn nsin(
2 πns
L)
=
1
π^2 s^3[
sin(
2 πnFs
L)
−
s
lFcos(
2 πnFs
L)]
, (11.5.64)
where
lF=(
̄h^2
2 mεF) 1 / 2
. (11.5.65)
Givenρ 1 (s), we can now evaluate the exchange energy. First, we need to transform
from integrations overrandr′to center-of-mass and relative coordinate
R=
1
2
(r+r′), s=r−r′. (11.5.66)This transformation yields forEx:
Ex=−1
4
∫
dRdsρ^21 (s)
s. (11.5.67)
Integrating overR, transforming thesintegral into spherical polar coordinates, and
performing the angular part of thesintegration gives
Ex=−V
4
∫
dsρ^21 (s)
s=−πV∫∞
0ds sρ^21 (s)