Path integral derivation 453
〈xk+1|e−β
K/Pˆ
|xk〉=
∫
dp〈xk+1|p〉〈p|xk〉e−βp
(^2) / 2 mP
. (12.2.16)
Finally, using eqn. (9.2.43), eqn. (12.2.16) becomes
〈xk+1|e−β
K/Pˆ
|xk〉=
1
2 π ̄h
∫
dpe−βp
(^2) / 2 mP
eip(xk+1−xk)/ ̄h. (12.2.17)
Since the range of the momentum integration isp∈(−∞,∞), the above integral is a
typical Gaussian integral that can be evaluated by completing the square. Thus, we
write
βp^2
2 mP
−
ip(xk+1−xk)
̄h
=
β
2 mP
[
p^2 −
2 imPp(xk+1−xk)
β ̄h
]
=
β
2 mP
{[
p−
imP(xk+1−xk)
β ̄h
] 2
+
m^2 P^2 (xk+1−xk)^2
β^2 ̄h^2
}
=
β
2 mP
[
p−
imP(xk+1−xk)
β ̄h
] 2
+
mP
2 β ̄h^2
(xk+1−xk)^2. (12.2.18)
When the two last lines of eqn. (12.2.18) are substituted back into eqn. (12.2.17), and
a change of variables
p ̃=p−
imP(xk+1−xk)
β ̄h
(12.2.19)
is made, we find
〈xk+1|e−β
K/Pˆ
|xk〉=
1
2 π ̄h
exp
[
−
mP
2 β ̄h^2
(xk+1−xk)^2
]∫∞
−∞
d ̃pe−βp ̃
(^2) / 2 mP
=
(
mP
2 πβ ̄h^2
) 1 / 2
exp
[
−
mP
2 β ̄h^2
(xk+1−xk)^2
]
. (12.2.20)
Now, eqn. (12.2.20) is combined with eqn. (12.2.13) to yield
〈xk+1|Ωˆ|xk〉=
(
mP
2 πβ ̄h^2
) 1 / 2
exp
[
−
β
2 P
(U(xk+1) +U(xk))
]
×exp
[
−
mP
2 β ̄h^2
(xk+1−xk)^2
]
. (12.2.21)
Finally, multiplying allP matrix elements together and integrating over theP− 1
coordinate variables, we obtain for the density matrix: