1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Thermodynamics 459

〈Aˆ〉=


1


Q(L,T)


lim
P→∞

(


mP
2 πβ ̄h^2

)P/ 2 ∫


dx 1 ···dxP

[


1


P


∑P


k=1

a(xk)

]


×exp

{



1


̄h

∑P


k=1

[


mP
2 β ̄h
(xk+1−xk)^2 +

β ̄h
P
U(xk)

]}∣∣





xP+1=x 1

, (12.3.8)


which treats thePcoordinatesx 1 ,...,xPon an equal footing.
Eqn. (12.3.8) can be put into a compact form as follows: First, we define a proba-
bility distribution functionf(x 1 ,...,xP) by


f(x 1 ,...,xP) =

1


QP(L,T)


(


mP
2 πβ ̄h^2

)P/ 2


×exp

{



1


̄h

∑P


k=1

[


mP
2 β ̄h

(xk+1−xk)^2 +

β ̄h
P

U(xk)

]}∣∣





xP+1=x 1

, (12.3.9)


whereQP(L,T) is the partition function for finiteP, which is obtained by removing
the limit asP→∞from eqn. (12.2.26):


QP(L,T) =


(


mP
2 πβ ̄h^2

)P/ 2 ∫


dx 1 ···dxP

×exp

{



1


̄h

∑P


k=1

[


mP
2 β ̄h

(xk+1−xk)^2 +

β ̄h
P

U(xk)

]}∣∣





xP+1=x 1

. (12.3.10)


Clearly,Q(L,T) = limP→∞QP(L,T). The functionf(x 1 ,...,xP) satisfies the condi-
tions of a probability distribution:f(x 1 ,...,xP)≥0 for allx 1 ,...,xPand

dx 1 ···dxPf(x 1 ,...,xP) = 1. (12.3.11)


In Section 7.2, we introduced the concept of anestimatorfor a multi-dimensional inte-
gral. In path integral calculations, equilibrium expectation values can be approximated
using estimator functions that depend on thePcoordinatesx 1 ,...,xP. Thus, for eqn.
(12.3.8), an appropriate estimator for〈Aˆ〉is the functionaP(x 1 ,...,xP) defined to be


aP(x 1 ,...,xP) =

1


P


∑P


k=1

a(xk). (12.3.12)

The expectation value〈Aˆ〉can be approximated for finitePas an average of the estima-
tor in eqn. (12.3.12) with respect to the probability distribution functionf(x 1 ,...,xP).
We write this approximation as


〈Aˆ〉P= lim
P→∞
〈aP(x 1 ,...,xP)〉f, (12.3.13)

where〈···〉findicates an average over the probability distribution functionf(x 1 ,...,xP).
It follows that〈Aˆ〉= limP→∞〈Aˆ〉P.

Free download pdf