1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Numerical evaluation 489

εvir

εvir

εvir

<ε >

vir

<ε >

vir

<ε >

vir

σ

σ

σ

Steps

Steps

Steps

Steps

Steps

Steps

Block size

Block size

Block size

Fig. 12.13Left column: Instantaneous virial estimator. Middle column: Cumulative average
of virial estimator. Right column: Error bar as a function ofblock size. Top row: Path-integral
molecular dynamics with no variable transformations. Middle row: Path-integral molecular
dynamics with staging transformation. Bottom row: Stagingpath-integral Monte Carlo with
j= 80. All energies are in units of ̄hω(reprinted with permission from Tuckermanet al. J.
Chem. Phys. 99 , 2796 (1993), copyright, American Institute of Physics).


and forNparticles inddimensions, the generalization of the virial estimator is


εvir({r(1),...,r(P)}) =

dNkT
2

+


1


P


∑P


k=1

∑N


i=1

1


2


(


r(ik)−r(ic)

)


·


∂U


∂r(ik)

+


1


P


∑P


k=1

U


(


r( 1 k),...,r(Nk)

)


, (12.6.41)


wherer(ic)is the centroid of particlei. Similarly, by applying the path-integral virial
theorem to the pressure estimator in eqn. (12.5.12), one can derive a virial pressure
estimator

Free download pdf