540 Quantum time-dependent statistical mechanics
t’t’’t 0 tt 0tt’t’’t 0 tt 0
t
(a) (b)Fig. 14.4The two integration regions in eqn. (14.2.27): (a) The regiont′′∈[t 0 ,t],t′∈[t 0 ,t′′].
(b) The regiont′∈[t 0 ,t],t′′∈[t′,t].
Fig. 14.4(a) illustrates the integration regiont′′∈[t 0 ,t],t′∈[t 0 ,t′′] in thet′-t′′plane,
which is covered in the second term on the right side of eqn. (14.2.27). The same region
can be covered by choosingt′∈[t 0 ,t] andt′′∈[t′,t], as illustrated Fig. 14.4(b). With
this choice, eqn. (14.2.27) becomes
I(t 0 ,t) =1
2
[∫
tt 0dt′∫t′t 0dt′′HˆI(t′)HˆI(t′′) +∫tt 0dt′∫tt′dt′′HˆI(t′′)HˆI(t′)]
. (14.2.28)
In the first term on the right side of eqn. (14.2.28),t′′< t′andHI(t′′) acts first,
followed byHI(t′). In the second term,t′ < t′′andHˆI(t′) acts first, followed by
HˆI(t′′). The two terms can thus be combined with botht′andt′′lying in the interval
[t 0 ,t] by introducing the time-ordering operator:
∫tt 0dt′∫t′t 0dt′′HˆI(t′)HˆI(t′′) =1
2
∫tt 0dt′∫tt 0dt′′T[
HˆI(t′)HˆI(t′′)]
. (14.2.29)
The same analysis can be applied to each order in eqn. (14.2.17), recognizing that a
product ofkoperators can be ordered ink! ways by the time-ordering operator. Eqn.
(14.2.17) can then be rewritten in terms of a time-ordered product
UˆI(t;t 0 ) =∑∞
k=0(
−
i
̄h)k
1
k!×
∫tt 0dt 1∫tt 0dt 2 ···∫tt 0dtkT[
HˆI(t 1 )HˆI(t 2 )···HˆI(tk)]
. (14.2.30)
The sum in eqn. (14.2.30) resembles the power-series expansion of an exponential, and
consequently we can write the sum symbolically as