Frequency spectra 545Writing theδ-function as an integral, eqn. (14.3.3) becomes
R(ω) =1
̄h^2|F(ω)|^2∫∞
−∞dt∑
i,fwiei(Ef−Ei− ̄hω)t/ ̄h∣
∣
∣〈Ef|Vˆ|Ei〉∣
∣
∣
2=
1
̄h^2|F(ω)|^2∫∞
−∞dte−iωt∑
i,fwi〈Ei|Vˆ|Ef〉〈Ef|Vˆ|Ei〉eiEft/ ̄he−iEit/ ̄h=
1
̄h^2|F(ω)|^2∫∞
−∞dte−iωt∑
i,fwi〈Ei|Vˆ|Ef〉〈Ef|ei
Hˆ 0 t/ ̄hˆ
Ve−i
Hˆ 0 t/ ̄h
|Ei〉. (14.3.4)In the last line, we have used the fact that|Ei〉and|Ef〉are eigenstates ofHˆ 0 to
bring the two exponential factors into the angle brackets as the unperturbed propa-
gator exp(−iHˆ 0 t/ ̄h) and its conjugate exp(iHˆ 0 t/ ̄h). Note, however, that the operator
exp(iHˆ 0 t/ ̄h)Vˆexp(−iHˆ 0 t/ ̄h) =Vˆ(t) is just the representation of the operatorVˆin
the interaction picture (see eqn. (14.2.3)). Thus, the average transition rate can be
expressed as
R(ω) =1
̄h^2|F(ω)|^2∫∞
−∞dte−iωt∑
i,fwi〈Ei|Vˆ(0)|Ef〉〈Ef|Vˆ(t)|Ei〉, (14.3.5)where theVˆ(0) is the operator in the interaction picture att= 0. Thus, both operators
in eqn. (14.3.5) are represented within the same quantum-mechanical picture. Note
that the sum over final states can now be performed using the completeness relation
∑
f|Ef〉〈Ef|=Iˆ (14.3.6)of the eigenstates ofHˆ 0. Eqn. (14.3.5) thus becomes
R(ω) =1
̄h^2|F(ω)|^2∫∞
−∞dte−iωt∑
iwi〈Ei|ˆV(0)Vˆ(t)|Ei〉=
1
̄h^2|F(ω)|^2∫∞
−∞dte−iωt1
Q(N,V,T)
Tr(
e−βHˆ (^0) ˆ
V(0)ˆV(t)
)
=
1
̄h^2|F(ω)|^2∫∞
−∞dte−iωt〈Vˆ(0)Vˆ(t)〉. (14.3.7)The last line shows that the ensemble-averaged transition rate at frequencyωis just
the Fourier transform of the quantum time correlation function〈ˆV(0)Vˆ(t)〉(Berne,
1971).
In general, a quantum time correlation function of two operatorsAˆandBˆwith
respect to an unperturbed HamiltonianHˆ 0 is given by
CAB(t) =Tr[
Aˆ(0)Bˆ(t)e−βHˆ^0]
Tr[
e−βHˆ^0