1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Examples 587

where it has been assumed thats 0 ̃γ(s 0 ) is of the same order ass 1. Using the fact that
s^20 =−ω ̃^2 and solving fors 1 , we obtain


s 1 =−

1


2


γ ̃(±iω ̃), (15.3.29)

which requires the evaluation of ̃γ(s) ats=±iω ̃. Note that


γ ̃(±iω ̃) =

∫∞


0

dt γ(t)e∓iωt ̃, (15.3.30)

which contains both real and imaginary parts. Defining


γ ̃(±iω ̃) =γ′( ̃ω)∓iγ′′( ̃ω), (15.3.31)

there are, to first order, two roots of ∆(s), which are given by


s+=i

(


ω ̃+

1


2


γ′′( ̃ω)

)



1


2


γ′( ̃ω)≡iΩ−

1


2


γ′( ̃ω)

s−=−i

(


ω ̃+

1


2


γ′′( ̃ω)

)



1


2


γ′( ̃ω)≡−iΩ−

1


2


γ′( ̃ω). (15.3.32)

Substituting the roots in eqn. (15.3.32) into eqn. (15.3.22) yields thesolution


q(t) =q(0)e−γ

′( ̃ω)t/ 2

[


cos Ωt+

γ′( ̃ω)
2Ω

sin Ωt

]


+


q ̇(0)

e−γ

′( ̃ω)t/ 2
sin Ωt

+


1



∫t

0

dτ f(t−τ)e−γ

′( ̃ω)τ/ 2
sin Ωτ

q ̇(t) = ̇q(0)

[


cos Ωt−

γ′( ̃ω)
2Ω
sin Ωt

]


e−γ

′( ̃ω)t/ 2
−Ωq(0)e−γ

′( ̃ω)t/ 2
sin Ωt

+


1



[


f(0)e−γ

′( ̃ω)t/ 2
sin Ωt+

∫t

0

dτ f′(t−τ)e−γ

′( ̃ω)τ/ 2
sin Ωτ

]


, (15.3.33)


where we have used the fact thatγ′′( ̃ω)≪ Ω, and we have neglected any terms
nonlinear inγ′( ̃ω). Since〈q(0)f(t)〉= 0 and〈q ̇(0)f(t)〉= 0, the velocity and position
autocorrelation functions become, respectively


Cvv(t) =


q ̇^2 (0)


e−γ

′( ̃ω)t/ 2

[


cos Ωt−

γ′( ̃ω)
2Ω

sin Ωt

]


Cqq(t) =


q^2 (0)


e−γ

′( ̃ω)t/ 2

[


cos Ωt+
γ′( ̃ω)
2Ω

sin Ωt

]


. (15.3.34)


As eqn. (15.3.34) shows, the decay time of both correlation functions is [γ′( ̃ω)t/2]−^1 ,
which is denotedT 2 and is called thevibrational dephasing time. (We will explore

Free download pdf