1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

638 Critical phenomena


temperature where local ordering is expected and the middle spin is likely to cause
neighboring spins to align with it. The transformation functionT(σ′;σ 1 ,σ 2 ,σ 3 ) for
this example can expressed mathematically simply as


T(σ′;σ 1 ,σ 2 ,σ 3 ) =δσ′σ 2. (16.9.10)

The new spin lattice is shown below the original lattice in Fig. 16.14.
The transformation function in eqn. (16.9.10) is now used to compute the new
Hamiltonian Θ′ 0 according to


e−Θ

′ 0 ({σ′})
=


σ 1


σ 2


σ 3

···



σN

(


δσ′ 1 σ 2 δσ′ 2 σ 5 ···

)


eKσ^1 σ^2 eKσ^2 σ^3 eKσ^3 σ^4 eKσ^4 σ^5 ···

=



σ 1


σ 3


σ 4


σ 6

···eKσ^1 σ

′ 1
eKσ
1 ′σ^3
eKσ^3 σ^4 eKσ^4 σ

′ 2
···. (16.9.11)

Eqn. (16.9.11) encodes the information we need to determine the new coupling param-
eterK′. We will use the rule that when the sums overσ 3 andσ 4 are performed, the
new interaction betweenσ′ 1 andσ′ 2 gives the contribution exp(K′σ′ 1 σ 2 ′) to the partition
function. If this rule is satisfied, then the functional form of the Hamiltonian will be
preserved. The sum overσ 3 andσ 4 that must then be performed in eqn. (16.9.11) is


σ 3


σ 4

exp[Kσ′ 1 σ 3 ] exp[Kσ 3 σ 4 ] exp[Kσ 4 σ′ 2 ].

Note that the spin productσ 3 σ 4 has two possible values,σ 3 σ 4 =±1, which allows us
to employ a convenient identity:


e±θ= coshθ±sinhθ= coshθ[1±tanhθ]. (16.9.12)

Eqn. (16.9.12) allows us to express exp(Kσ 3 σ 4 ) as


eKσ^3 σ^4 = coshK[1 +σ 3 σ 4 tanhK].

If we definex= tanhK, the product of the three exponentials becomes


eKσ

′ 1 σ 3
eKσ^3 σ^4 eKσ^4 σ
2 ′
= cosh^3 K(1 +σ′ 1 σ 3 x)(1 +σ 3 σ 4 x)(1 +σ 4 σ′ 2 x)

= cosh^3 K(1 +σ′ 1 σ 3 x+σ 3 σ 4 x+σ 4 σ 2 ′x

+σ 1 ′σ 32 σ 4 x^2 +σ 1 ′σ 3 σ 4 σ′ 2 x^2 +σ 3 σ^24 σ′ 2 x^2

+σ 1 ′σ 32 σ^24 σ 2 ′x^3 ). (16.9.13)

When summed overσ 3 andσ 4 , most terms in eqn. (16.9.13) cancel, yielding


σ 3


σ 4

eKσ

′ 1 σ 3
eKσ^3 σ^4 eKσ^4 σ

′ 2
= 2cosh^3 K

[


1 +σ′ 1 σ′ 2 x^3

]


≡coshK′[1 +σ′ 1 σ 2 ′x′].

(16.9.14)
In eqn. (16.9.14), we have expressed the interaction in its original form but with a
new coupling constantK′. In order for the interaction term [1 +σ 1 ′σ′ 2 x′] to match the
original interaction [1 +σ′ 1 σ′ 2 x^3 ], we requirex′=x^3 or

Free download pdf