638 Critical phenomena
temperature where local ordering is expected and the middle spin is likely to cause
neighboring spins to align with it. The transformation functionT(σ′;σ 1 ,σ 2 ,σ 3 ) for
this example can expressed mathematically simply as
T(σ′;σ 1 ,σ 2 ,σ 3 ) =δσ′σ 2. (16.9.10)
The new spin lattice is shown below the original lattice in Fig. 16.14.
The transformation function in eqn. (16.9.10) is now used to compute the new
Hamiltonian Θ′ 0 according to
e−Θ
′ 0 ({σ′})
=
∑
σ 1
∑
σ 2
∑
σ 3
···
∑
σN
(
δσ′ 1 σ 2 δσ′ 2 σ 5 ···
)
eKσ^1 σ^2 eKσ^2 σ^3 eKσ^3 σ^4 eKσ^4 σ^5 ···
=
∑
σ 1
∑
σ 3
∑
σ 4
∑
σ 6
···eKσ^1 σ
′ 1
eKσ
1 ′σ^3
eKσ^3 σ^4 eKσ^4 σ
′ 2
···. (16.9.11)
Eqn. (16.9.11) encodes the information we need to determine the new coupling param-
eterK′. We will use the rule that when the sums overσ 3 andσ 4 are performed, the
new interaction betweenσ′ 1 andσ′ 2 gives the contribution exp(K′σ′ 1 σ 2 ′) to the partition
function. If this rule is satisfied, then the functional form of the Hamiltonian will be
preserved. The sum overσ 3 andσ 4 that must then be performed in eqn. (16.9.11) is
∑
σ 3
∑
σ 4
exp[Kσ′ 1 σ 3 ] exp[Kσ 3 σ 4 ] exp[Kσ 4 σ′ 2 ].
Note that the spin productσ 3 σ 4 has two possible values,σ 3 σ 4 =±1, which allows us
to employ a convenient identity:
e±θ= coshθ±sinhθ= coshθ[1±tanhθ]. (16.9.12)
Eqn. (16.9.12) allows us to express exp(Kσ 3 σ 4 ) as
eKσ^3 σ^4 = coshK[1 +σ 3 σ 4 tanhK].
If we definex= tanhK, the product of the three exponentials becomes
eKσ
′ 1 σ 3
eKσ^3 σ^4 eKσ^4 σ
2 ′
= cosh^3 K(1 +σ′ 1 σ 3 x)(1 +σ 3 σ 4 x)(1 +σ 4 σ′ 2 x)
= cosh^3 K(1 +σ′ 1 σ 3 x+σ 3 σ 4 x+σ 4 σ 2 ′x
+σ 1 ′σ 32 σ 4 x^2 +σ 1 ′σ 3 σ 4 σ′ 2 x^2 +σ 3 σ^24 σ′ 2 x^2
+σ 1 ′σ 32 σ^24 σ 2 ′x^3 ). (16.9.13)
When summed overσ 3 andσ 4 , most terms in eqn. (16.9.13) cancel, yielding
∑
σ 3
∑
σ 4
eKσ
′ 1 σ 3
eKσ^3 σ^4 eKσ^4 σ
′ 2
= 2cosh^3 K
[
1 +σ′ 1 σ′ 2 x^3
]
≡coshK′[1 +σ′ 1 σ 2 ′x′].
(16.9.14)
In eqn. (16.9.14), we have expressed the interaction in its original form but with a
new coupling constantK′. In order for the interaction term [1 +σ 1 ′σ′ 2 x′] to match the
original interaction [1 +σ′ 1 σ′ 2 x^3 ], we requirex′=x^3 or