1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1

688 References


Sergi, A. (2003). Non-Hamiltonian equilibrium statistical mechanics. Phys. Rev.
E, 67 , 021101.
Shankar, R. (1994). Principles of Quantum Mechanics (2nd edn). Plenum Press,
New York, NY.
Silvera, I. F. and Goldman, V. V. (1978). The isotropic intermolecular potential for
H 2 and D 2 in the solid and gas phases.J. Chem. Phys., 69 , 4209.
Skeel, R. D. and Hardy, D. J. (2001). Practical construction of modified Hamiltonians.
SIAM J. Sci. Comput., 23 , 1172.
Skinner, J. L. and Park, K. (2001). Calculating vibrational energyrelaxation rates
from classical molecular dynamics simulations: Quantum correction factors for pro-
cesses involving vibration-vibration energy transfer.J. Phys. Chem. B, 105 , 6716.
Sprik, M. and Ciccotti, G. (1998). Free energy from constrained molecular dynamics.
J. Chem. Phys., 109 , 7737.
Sprik, M., Impey, R. W., and Klein, M. L. (1985). Study of electron solvation in
liquid-ammonia using quantum path integral Monte-Carlo calculations. J. Chem.
Phys., 83 , 5802.
Sprik, M., Impey, R. W., and Klein, M. L. (1986). Study of electron solvation in
polar solvents using path integral Monte Carlo calculations.J. Stat. Phys., 43 , 967.
Stillinger, F. H. and Rahman, A. (1972). Molecular dynamics study oftemperature
effects on water structure and kinetics.J. Chem. Phys., 57 , 1281.
Stillinger, F. H. and Rahman, A. (1974). Improved simulation of liquid water by
molecular-dynamics.J. Chem. Phys., 60 , 1545.
Strang, G. (1968). On the construction of and comparison of difference schemes.
SIAM J. Numer. Anal., 5 , 506.
Straub, J. E., Borkovec, M., and Berne, B. J. (1988). Molecular dynamics study of
an isomerizing diatomic in a Lennard-Jones fluid.J. Chem. Phys., 89 , 4833.
Suzuki, M. (1991a). Decomposition formulas of exponential operators and Lie expo-
nentials with some applications to quantum mechanics and statisticalphysics. J.
Math. Phys., 32 , 400.
Suzuki, M. (1991b). General theory of fractal path-integrals with applications to
many-body theories and statistical physics.J. Math. Phys., 32 , 400.
Suzuki, M. (1992). General nonsymmetric higher-order decomposition of exponential
operators and symplectic integrators.J. Phys. Soc. Japan, 61 , 3015.
Suzuki, M. (1993). General decomposition theory of ordered exponentials. Proc.
Japan Acad. B, 69 , 161.
Sweet, C. R., Petrone, P., Pande, V. S., and Izaguirre, J. A. (2008). Normal mode
partitioning of Langevin dynamics for biomolecules.J. Chem. Phys., 128 , 145101.
Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R. (1982). A computer-
simulation method for the calculation of equilibrium-constants for the formation
of physical clusters of molecules—Application to small water clusters. J. Chem.
Phys., 76 , 637.
Takahashi, M. and Imada, M. (1984). Monte Carlo calculations of quantum systems.
II. Higher order correction.J. Phys. Soc. Japan, 53 , 3765.
Tarasov, V. E. (2004). Phase-space metric for non-Hamiltonian systems. J. Phys.
A, 38 , 2145.
Free download pdf