2.2 Algebra of Limits 71
- Suppose lim Xn = S and lim Yn = -3. Find each of the following:
n-+oo n-+oo
x2 - 2y2
<(a) lim (2xn - 3yn)' (b) lim n n
n-+oo n-+oo 4XnYn
- Suppose lim Xn = S and lim Yn = -3. Find each of the following:
_(c) lim lxn + 2ynl - (d) lim 1 + ,jx;;,
n-+oo Xn - Yn n-+oo y'l - Yn
14. Prove Theorem 2.2. 13 (f).
,;-lS. In each of the following, find the limit and use the "Algebra of Limits"
and other theorems of this section to justify your answer:
___ (-a) lim -
2
6
7
= (b) lim -
4
1
=
n-+oo + n n-+oo - Sn
{-c) lim _n_ =
n-+oo 3n + 8
~e) lim ( lOn - 11 ) 2
' n-+oo 7 - 2n
. 100
(g) hm - 2
r"'" n-+oo n
'--(") l l" Im f*s --=
n-+oo n^2 + s
(k) lim 3n2 + n - S
, _ n-+oo n^2 + 6n
,(m) lim
2
~n
n-+oo n - 7
Jo)
{q)
n^3 - 2n^2
lim
n-+oo 6 - 3n + 2n3
lim^1 + Vn =
n-+oo 3 - Jn
. 2n
(d) hm --=
n-+oo 3 - 4n
( f) lim ( S - 2n) 3
n-+oo 1+6n
. 6n
(h) hm 4 =
n-+oo n
(j) lim 8n + 9 =
n-+oo 8 - 3n2
r 4n^2 - Sn
~fl) n~~ 8n 2 + 3n - 1
3n^2 + 7n- 4
(n) nl~~ n3 - 4
2n^3 + 8n^2 - 23
(p) lim
n-+oo Sn3 - 6n
(r) lim ~ =
n-+oo 1 - n
16. Use mathematical induction to extend Theorem 2.2.13 (d) to prove that if
{xn} converges, then Vp EN, {x~} converges, and lim x~ = ( lim xn)P.
n-+oo n-+oo