1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1

80 Chapter 2 • Sequences


EXERCISE SET 2.3


  1. Prove Corollary 2.3.2.

  2. In each of the following, find the limit and use the second squeeze principle
    to prove that answer. (See Exercise 2.2.15.)


(a) lim -
6


  • = (b) lim -
    1

    • =
      n-+oo 2 + 7n n-+oo 4 - 5n
      (c) · lim n =
      n-+oo 3n + 8
      (e) lim lOn -^11 =
      n-+oo 7 - 2n




(g) lim lOO =
n-+OO n2

(i) lim _n_ =
n-+oo n^2 + 5
(k) lim 3n2 + n - 5
n-+oo n^2 + 6n

(m) lim^5 n
n-+oo 2n3 - 7
n^3 - 2n^2
(o) lim
n-+oo 6 - 3n + 2n3


  1. Prove Theorem 2.3.5 (b).


2n
(d) lim --=
n-+oo 3 - 4n

( f) lim^5 -
2
n =
n-+oo 1+6n

(h) lim
6
n =
n-+oo n4
(j) lim 8n + 9
n-+oo 8 - 3n^2
(1) lim 4n2 - 5n
n-+oo 8n^2 + 3n - 1
r 3n^2 + 7n - 4
(n) n2...1!, n3 - 4

2n^3 + 8n^2 - 23
(p) lim -----
n-+oo 5n3 - 6n


  1. Prove Theorem 2 .3 .6 using Theorem 1.5.7 and the squeeze principle.

  2. Prove each of the following:


(a)

. 1 + 2 + 3 + · · · + n 1
hm = -
n-+oo n^2 2
. 12 + 22 + 32 + ... + n2
(b) hm 3
n--+oo n


1


  • 3
    . 13 + 23 + 33 + ... + n3
    (c) hm 4
    n--+oo n


1


  • 4
    [Hint: See Exercises 1.3.3- 1.3.5.]



  1. Geometric Series: (a) Given that lrl < 1, prove that
    00
    '"°'ark = lim (a + ar + ar^2 + · · · + arn) = a. [See the formula for
    L n-+oo 1-r
    k=O
    finite geometric sums, Exercise 1.3.12.]


(b) Calculate lim (~+~+I_+···+ I_).
n-+oo 3 9 27 3n
Free download pdf