212 Chapter 4 • Limits of Functions
x-2
Example 4.4. 7 Investigate lim --.
x-+l X - 1
x-2
Solution: In Example 4.4.5, we showed that lim --= +oo and
x-+1-x-l
lim x -
2
= -oo. Theorem 4.4.6 then tells us that lim x -
2
is neither +oo
x-+l+X-1 x-+lX-1
nor -oo. The most we can say about lim x -
2
is that it does not exist. D
x-+l X - 1
ALGEBRA OF INFINITE LIMITS
Theorem 4.4.8 Suppose lim f(x) +oo, lim g(x) +oo, lim h(x)
x--+xo X-+Xo X--+Xo
-oo, and lim k(x) = -oo. Then
X--+Xo
(a) lim (f(x) + g(x)) = +oo;
X--t-Xo
(b) lim (h(x) + k(x)) = -oo;
X--+Xo
(c) lim (f(x)g(x)) = +oo;
x--+xo
(d) lim (h(x)k(x)) = +oo;
X--+Xo
(e) lim (f(x)h(x)) = -oo.
X--+Xo
Proof. (a) Suppose lim f(x) = +oo and lim g(x) = +oo. Let M > 0.
X--+Xo X--+Xo
Since X--+Xo lim f(x) = +oo, 381 > 0 3 0 < Ix - xol < 81 =} f(x) > M. Since
X--+Xo lim g(x) = +oo,^382 >^0 3 0 < Ix - xol <^82 =} g(x) > M. Let^8 =
min{81,82}. Then,
0 <Ix - xol < 8 =} f(x) >Mand g(x) > M
=} f(x) + g(x) > 2M > M.
Therefore, by Definition 4.4.1, lim (f(x) + g(x)) = +oo.
(b) Exercise 8.
( c) Exercise 9.
(d) Exercise 10.
X--+Xo