1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1

216 Chapter 4 • Limits of Functions



  1. Prove Theorem 4.4.8 (d).

  2. Prove Theorem 4.4.10 (a).

  3. Prove Theorem 4.4.10 (b).

  4. Show by examples that the form ( +oo) + ( -oo) is indeterminate. That
    is, in each of the following, find functions f and g satisfying the given
    condition, and such that lim f(x) = +oo and lim g(x) = -oo:
    X--+Xo X-+Xo
    (a) lim [f(x) + g(x)] = 0 (b) lim [f(x) + g(x)] = +oo
    x-+xo x-+xo
    (c) lim [f(x) + g(x)J - oo (d) lim [f(x) + g(x)] = L =f. 0.
    X-+Xo X-+Xo

  5. Show by examples that the form ( +oo) · 0 is indeterminate. That is , in
    each of the following, find functions f and g satisfying the given condition,
    and such that lim f(x) = +oo and lim g(x) = 0:
    x-+xo x-+xo
    (a) lim f(x)g(x) = 0 (b) lim f(x)g(x) = +oo
    X-+Xo X--+Xo
    ( c) lim f (x)g(x) = -oo (d) lim f(x)g(x) = L =f. 0.
    X-+Xo X-+Xo

  6. In each of the following, a function f and a number x 0 are given. Use the
    approach of Example 4.4.4 to investigate lim f(x) and lim f(x), and
    X->Xo X->xci
    use the results to investigate lim f ( x).
    x-+xo
    x
    (a) f(x) = (x _ l) 2 ; xo = 1


3
(b) f(x) = (x +
2
) 2 ; xo = -2
x
(c) f(x) = x _
1
; Xo = 1
x^2 -1
(e) f(x) = --; xo = 3
x-3

x+3
(d) f(x) = x+
5
; xo = -5
x^2 + x - 2
(f) j(x) = ; xo = 2
x^2 - 3x + 2
3x - 9
(g) f(x) = ~
9

; Xo = -3
x -

(h) f ( x) = x


2
+
2
x +
1
; x o = 0
x^2 - 3x


  1. Investigate each of the following (use the familiar algebraic properties of
    cos x and sin x):
    . 1
    (a) hm cos -
    X->0 X
    (b) lim x cos .!.
    x->O X
    ( c) lim .!. cos x
    x->O- X


(d) lim .!. cos.!.
x->O+ X X
17. Vertical Asymptotes: The graph of a function f is said to have the
vertical line x = xo as a vertical asymptote if the domain of f contains
an interval of the form (xo - 8, x 0 ) or (x 0 , x 0 + 8) for some 8 > 0, and
f(x)---> +oo (or - oo) as x---> x 0 or x---> xt.
Free download pdf