222 Chapter 4 • Limits of Functions
Theorem 4.4.26 (Horizontal Asymptotes of Rational Functions) Con-
sider the rational function
R(x) = anxn + an-1Xn-l + · · · + a1x + ao.
bmxm + bm-1xm- l + · · · + bix + bo
(a) If n > m, then th e graph of R(x) has no horizontal asymptotes;
a
(b) If n = m, then the line y :== b n is a horizontal asymptote;
m
(c) If n < m, then the x-axis is a horizontal asymptote.
Proof. Exercise 19. •
~I ,
------------~----
'
y=l
------------/
x
f(x) = x + 2
x
/' y
Y! I
-----------r---y = 2 I
Figure 4.11
EXERCISE SET 4.4-B
- Complete Definition 4.4.12.
- Complete Definition 4.4.14.
- Complete Definition 4.4.16
x = 2
--r------------I
'
: x
I I
I I 2x2
: f(x)= ---
' I x2 + x-6
I
- Use Definitions 4.4.11- 4.4.16 to prove the following limit statements:
(a) lim 3x-1=~ (b) lim 3x2+2x-l=+oo
x-++oo 6x + 5 2 x-++oo X + 4
1-x^2 x - l
(c) lim --= +oo (d) lim --= 1
X->-00 X + 2 X->- 00 X + 1
(e) lim^1
1
- x
2
= -oo (f) lim x
2
+ x;^2 = -oo
x-++oo + X x-+-oo X +
- Prove Theorem 4.4.18 (c).
- Prove Theorem 4.4.21.