1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1

222 Chapter 4 • Limits of Functions


Theorem 4.4.26 (Horizontal Asymptotes of Rational Functions) Con-
sider the rational function


R(x) = anxn + an-1Xn-l + · · · + a1x + ao.
bmxm + bm-1xm- l + · · · + bix + bo
(a) If n > m, then th e graph of R(x) has no horizontal asymptotes;
a
(b) If n = m, then the line y :== b n is a horizontal asymptote;
m
(c) If n < m, then the x-axis is a horizontal asymptote.

Proof. Exercise 19. •

~I ,


------------~----
'

y=l

------------/


x
f(x) = x + 2

x

/' y

Y! I
-----------r---y = 2 I

Figure 4.11

EXERCISE SET 4.4-B


  1. Complete Definition 4.4.12.

  2. Complete Definition 4.4.14.

  3. Complete Definition 4.4.16


x = 2
--r------------I
'
: x
I I
I I 2x2
: f(x)= ---
' I x2 + x-6
I


  1. Use Definitions 4.4.11- 4.4.16 to prove the following limit statements:


(a) lim 3x-1=~ (b) lim 3x2+2x-l=+oo
x-++oo 6x + 5 2 x-++oo X + 4
1-x^2 x - l
(c) lim --= +oo (d) lim --= 1
X->-00 X + 2 X->- 00 X + 1
(e) lim^1
1


  • x


2
= -oo (f) lim x

2
+ x;^2 = -oo
x-++oo + X x-+-oo X +


  1. Prove Theorem 4.4.18 (c).

  2. Prove Theorem 4.4.21.

Free download pdf