1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
6.6 *L'Hopital's Rule 355


  1. Use the result of Exercise 2 (b) to prove Cases 13, 14 , and 15 of Theorem
    6.6.4.

  2. Calculate each of the following limits. Before using L'Hopital's rule, be
    sure tha t the hypotheses are met.
    (a) lim^1 - ex (b) lim ln(x/^3 )
    x->O X x->3 3 - X
    (d) lim ~inx
    x->7r s1n4x
    2x + 1
    (g) lim --
    x->O 3x + 1


(j) lim Vx - 1
X->0Vx+1

( )^1

. sin x
e im --
x->O+ Vx
2x -1
(h) lim --
x->O 3 x - 1


(k) lim ln~x/7r)
X->1r sin x



  1. Prove Case 3 of Theorem 6.6.6.




  2. Prove Cases 4, 5, and 6 of Theorem 6.6.6.




  3. Prove Cases 7, 8, and 9 of Theorem 6.6.6.




  4. Prove Cases 10, 11, and 12 of Theorem 6.6.6.




  5. Prove Cases 13 , 14 , and 15 of Theorem 6.6.6.




(c) lim 1 - cosx
x->O cosx^2
(f) r x cosx
x~ sinx
(i) lim ln (1+1/x)
X-><Xl 1/X

(1) lim JXTI -^1
X->0 X



  1. Calculate each of the following limits. Before using L'Hopital's rule, be
    sure that the hypotheses are met.
    (a) lim ex (b) lim ex
    X->-<Xl X
    (c) lim lnx (d) lim secx
    X->0+ ln X
    (e) lim lnx (f) lim 3 + 4secx
    x->O+ ex X->7r / 2- 2 + tan X
    (g) lim lnsin2x (h) lim 1/(x - 2)
    X->7r/ 2 - lnCOSX X->2+ ln(x-2)




  2. Calculate each of the following limits. In each case, describe the inde-
    terminate form, and transform it into a form to which L 'Hopital's rule
    applies. (Before using L'Hopital's rule, be sure the hypotheses are met.)
    (a) lim (secx - t anx) (b) lim (~ + lnx)
    X->7r /2+ x->O+
    (c) lim x ln(sinx) (d) lim xsinx
    x->O+ x->O+
    (e) lim (1-x)^11 x (f) lim (1 - ~r
    x--+O+ x--+oo x




(g) lim (ex+ x)^1 /x (h) lim (.!_ - -


1
-)
X-><Xl X->0 X eX - 1
Free download pdf