7.2 The Riemann Integral Defined 361
a b x
(a) (b)
Figure 7.1
For i = 1, 2, · · · , n , the ith subint erval of P is [Xi-l, Xi], and we define [See
Figure 7.1 (b).]
mi= inf f[xi- 1, xi] =inf {f(x ) : x E [xi-1,xi]};
Mi = sup f[xi-1, xi]= sup {f(x ) : x E [xi-1, xi]};
L::::.i =Xi - Xi-l = length of the ith subinterval [ xi-l, xi].
For each partit ion P we define the upper and lower Darboux sums,
n
(the lower Darboux sum for f over P).
i=l
n
S(f, P) = L Mif::::.i (the upper Darboux sum for f over P).
i= l
a= Xo X 1 X2 X3 X4 X5 x6 X7 xg = b a = Xo X j X2 X3 X4 X5 x6 X7
l (j. P) S(J. P)
Figure 7.2
Lemma 7.2.2 For all partitions P of [a, b], $_(!, P) ~ S(f, P).
Proof. Exercise 1. •
Definition 7 .2.3 A partition Q of [a, b] is a refinement of a partition P of
[a, b] if P ~ Q.