370 Chapter 7 • The Riemann Integral
n
Then, S(f, P) - S..(f, P) = L(Mi - mi)6i
i=l n
= L (f(x~') - l(xD) 6.i
i=l n
< :Lc-6.i
i=l n
= EL 6.i = c-(b - a).
i=l
Hence, 3 partition P of [a, b] 3 S(f, P) -S..(f, P) < (b-a)c-. By Riemann's
criterion for integrability, l is integrable over [a, b]. •
EXERCISE SET 7.2
- Prove Lemma 7.2.2. [Hint: compare the formulas for S..(f, P) and S(f, P).]
- Justify the assertion made in the proof of Theorem 7.2.4: "It is sufficient
to consider the case when Q contains exactly one point not contained in
P." - Suppose a< band f:[a,b]--> R. Prove that if\ix E [a,b], m:::; l(x):::; M,
then m(b-a):::; l:l:::; l:l:::; M(b-a) and l:l-l:l:::; (M -m)(b-a).
- Consider the characteristic function of an open interval, say l = xc 3 , 6 ),
{
defined by l(x) = lif3<x<6' }. Prove that l .. is mtegrable on [O, 10]
0 otherwise
and find (^10)
10
f. (See Example 7.2.11, but b eware: the interval (3, 6) is open
in this case.)
- Consider the characteristic function of a single-point set, say l = X{s},
defined by l(x) = {
1
if x =
5
' } · Prove that l is integrable on [2, 9]
0 otherwise
and find l; f. (See Example 7.2. 11 and Exercise 4.)
- For the function l(x) = 5 - 3x, on the interval [O, 2], use each given
partition to find S..(f, P) and S(f, P): [Caution: This function is decreasing
on the given interval.]
(a) P = {o,~,1,~,2} (b) P = {o,~,~,1,~,~,2}
(d) p = {O 'n' 1. i n' n' .2.... ' 2n} n