1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
7.3 The Integral as a Limit of Riemann Sums 385

11. Modify the techniques used in Exercise 10, as needed, to evaluate each of
the following:

(a) lim ~ f"= cos (k
2

7r)
n-+OO n k=l n

( c) lim ~ 2k + 3n
n-+oo~ n2
k=l

(b) lim -^1 I: n sin (kn) -
n-+oo n k=l 3n

(d) lim ~ fl8k
n-+oo~ V ~
k=l


  1. Consider the function f(x) = {
    1
    if
    1
    :::; x <
    3
    } ·
    0 otherwise
    A slight modification of the argument given in Example 7.2.11 will prove
    that f is integrable over [O, 4]. Let { Qn} denote the sequence ofregular n-
    partitions of [O, 4]. Show that the sequence of lower sums {S..(f, Qn)} is not
    monotone increasing, and that the sequence of upper sums {S(f, Qn)} is
    not monotone decreasing. (See Remarks 7.3.10.)


13. Prove the trapezoidal rule: If f is integrable over [a, b], and Qn
{xo,x 1 , · · · ,xn} is the regular n-partition of [a,b], then
b b-a
J, a f = n-+oo lim -2n [f (xo) + 2f (x1) + · · · + 2f (xn_i) + f (xn)].

Hint: The expression in brackets is 2 [f(xo) + f(x1) + · · · + f(xn_i) + f(xn)]-
[f(b) + f(a)J.


  1. Prove Simpson's rule: If f is integrable over [a, b], and Qn = { Xo, x 1 , · · · , Xn}
    is the regular n-partition of [a, b] into an even number of subintervals, then
    b b-a
    J. f = lim - [f (xo) + 4f (x1) + 2f (x2) + 4f (x 3) · · · + 4f (Xn-1) + f (xn)].
    a n-+oo 3n
    Hint: Try something like the hint given in Exercise 13.

  2. Finish the proofofTheorem 7.3.11 by showing that S(f, Q) < S(f, P)+c-.


16. Prove Corollary 7.3.12 (b).


  1. Prove Theorem 7.3.13.

  2. Prove Theorem 7.3.14.

  3. Prove Theorem 7.3. 15.

  4. Prove Theorem 7.3. 16.

  5. Prove the claims made in Example 7.3.17.

Free download pdf